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It is shown that each symmetry of a field theory with interaction and with a mass gap, induced by a 
local current, is also induced by at least two other currents, local with respect to the asymptotic free 
fields and bilinear in these fields. The currents are asymptotic currents in the sense of Araki and Haag 
lH. Araki and R. Ha~Commun. Math. Phys. 4,77 (1967) 1 of the original current. It is also shown that 
the charges, displaying spinorial transformation character with respect to the Lorentz group, vanish, 
while the tensorial charges are a linear combination of the scalar charges (internal symmetries) and 
the energy-momentum vector (translational symmetry). 

1. INTRODUCTION 

In some recent publications attention was paid to 
the problem of symmetries in the framework of 
axiomatic field theory (see, e.g., Refs. 1-9 and 10). 

This paper is an extension of ideas previously put 
forward (see in particular Refs. 2 and 9). 

We are concerned here with physical symmetries 
only, by which we mean symmetry groups whose 
generators are induced by currents, local, and local 
relative to the considered fields, locally conserved, 
with definite transformation properties under the 
Poincare group. 

Assuming that our field theory is constructed out 
of massive scalar, spinor, vector, spinor-vector, 
and tensor fields, we show that every physical sym­
metry is either an internal symmetry or a trans­
lation or a trivial combination of both, as soon as 
there is an interaction present among the fields 
under consideration. 

The existence of "spinorial" charges as a counter­
part to scalar (internal symmetry) and vector 
(translational symmetry) charges are ruled out by 
our results. 

These results are not surprising, although not easy 
to prove. They state simply that in a relativistic 
model of field theory no mixing of space-time and 
internal symmetries can occur. We arrive at 
these conclusions without using group theoretical 
arguments. 

Unfortunately, our arguments cannot be extended 
to the case of massless fields, since very little 
is known about their asymptotic behavior. Our 
conjecture would be, however, that our results 
hold true also in this case as far as strict sym­
metries are concerned, barring spontaneously 
broken symmetries; the latter-fortunately enough 
-aifect only the case of particles of helicity 
zero. 11 

We would like to emphasize the crucial role that 
the interaction among the fields plays in our ana­
lYSis. The role of interaction was exhibited first, 
in this context, by Orzalesi, Sucher, and Woo.3 

For the free-field case, the aiorementioned state­
ment no longer need be true. 

Since the essentially and spontaneously broken 
symmetries remain beyond the scope of our in­
vestigations, we consider our results as "no-go" 
theorems. 
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2. ASSUMPTIONS 

We list the relevant assumptions: 

(i) The Poincare group is unitarily implemented 
in the Hilbert space Je by the operators u(A, a). 

Here A E SL(2, c) and {A~(A), a == (aO, at, a2a3)} 

represents the Poincare group in the Minkowski 
space. In particular the translation group is given 
by U(l, a) = exp(iPa), where Pa ;: P aj.l. We require 
that the spectrum of P IJ lie in the f6rward light 
cone and that the spectrum of p2 consist of two 
discrete points: 0, corresponding to the unique 
vacuum state n, and m2 > 0, corresponding to the 
one-particle Hilbert subspace 

(2.1) 

(El. is the projection operator on to the subsl?ace 
Je l }, as well as a continuous part {1-'2 > m 2 ,oo} 
corresponding to the scattering states. 

(ii) We are interested in a theory of an arbitrary 
but finite number of quantal nelds of spin 0, ~, 1, ~, 
and 2 which are operator-valued distributions. We 
assume all the fields to be real. l2 

We denote scalar fields [the (0,0) representation 
for free fields] by <p (i)(x), where i = 1, ... ,no 
enumerates the fields; the 4-spinor fields [(~, 0) 
and (0, ~) representation] by lJI~P(x), with a = 1,2, 
3,4, i = 1, ... ,n l i2' the vector fields [(t,~) repre­
sentation] by <p~i){x), with 

(2.2) 

with I-' = 0,1,2,3, i = 1, ... ,nl(for the vector 
indices we adopt the summation convention); the 
mixed vector-spinor fields (1,~) and (~, 1) repre­
sentations] by lJIWIl (x), with 

(2.3a) 

(2.3b) 

with a = 1,2,3,4, ,.., = 0, 1, 2,3, i = 1, ... ,n3 / 2 ; 
here I'" are the Dirac matrices in a Majorana re­
presentation, all being pure imaginary and unitary. 
y0 being antisymmetric, yj,j = 1,2,3, symmetric; 13 
finally, tensor fields [(1,1) representation] by 
tPW(x), with 

.I.{i) _ .I.{;) 'l'j.lU - 'l'Uj.I.) (2.4a) 

Copyright © 1971 by the American Institute of Physics 
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(2.4b) (U, t/I(i)(x)E It/l(j)(Y)fl) 

cp~ = 0, (2.4c) 

11, II == 0, 1, 2,3; i == 1, ... ,n2 • 

Since the fields we are concerned with are inter­
acting fields and the restrictions (2.2)-(2.4) are 
usually imposed on free fields, an explanation is 
in order. Is it possible to maintain these supple­
mentary conditions also in the case of interacting 
fields? It turns out that this can be done without 
violating the locality conditions. In general one 
has only to replace the original interpolating in­
teracting tensor or spinor field by a new local 
field, which is local with respect to the original 
one and has the same asymptotic (Lehmann, 
Symanzik, and Zimmermann) limits (in other 
words, belongs to the same Borchers class as the 
original field). The details are presented in 
Appendix A. 

The list of fields given above does not encompass 
the fields corresponding to the representations 
(3/2,0) and (0,3/2) as well as the representations 
(1,0) and (0,1). These fields, however, can be 
expressed in terms of other fields already listed. 
This is also explained in cUltail in Appendix A on 
the example of the latter case. 

To make precise what we understand by the trans­
formation of a field, we assume that all the fields 
transform under the same Poincare representa­
tion, viz. 

u(A, a)cp (i)(x) U(A, a)+ = cp(i)(Ax + a), 

i:=l,"',no' (2.5a) 

U(A,a)t/I~)(x)U(A,a)+ ==~S.;l(A)t/lJi)(Ax + a), 
8 

i == 1,'" ,n1/ 2 , (2.5b) 

U(A, a)cp(i)(x)U(A, a)+ == A -J.I1IlCP~i)(Ax + a), 
J.I , 

i := 1,'" ,n1, (2.5c) 

etc., where AIJ = A~(A) and Sa.il(A) are four­
dimensional ;epresentations of the Lorentz group, 
irreducible and reducible, respectively. 

We assume further that the fields are (anti)local 
and relatively normally (anti)local [i.e., the field 
of spin !(2k + 1) anticommute with each other and 
commute with the fields of spin k, where k is an 
integer, for spacelike separations). For Simplicity 

[U, cpU>(f)U] == 0, where cp(j)(f) == !f(x)cp(j)(x)dx. 

Since our results do not depend essentially on the 
kind of test functions used, we do not specify them, 
demanding only the locality, cluster decomposition, 
etc. maintain their meaning. 

(iii) To promote aesthetic values as well as to get 
proper asymptotic conditions, we assume [see 
(2.1) ] 

(U, CP(i)(x)E1cp(j)(y)U) == i~(+)(x - y; m2)oii, (2.6a) 

etc. Since we assumed m 2 ;e 0, it follows from 
(2. 6) that the free asymptotic fields exist. 14 We 
denote them by 

Cp!J)(x), t/I.JP(x), etc., (2.7) 

respectively; "ex" stands for "in" or "out." 

These free fields are properly normalized, also 
due to (2. 6), and satisfy normal (anti) commutation 
relations. 

(iv) We assume that one ci. the sets of asymptotic 
fields, say the incoming fields, is irreducible. 
This implies that the original set of interacting 
fields as well as the outgoing fields is also irre­
ducible. 

(v) Let us assume that in our theory the fields 
exist: 

T, w .•• w (x) == T, ... (x), (2.8) 
1\., l' , b 1\.,_ 

where ;\ == 0, 1,2,3 is a Minkowski vector index, 
(w1, ••• , wJ == '" can be either spinor or vector 
indices, such that they are normally (anti) local 
with respect to other fields, real, transform under 
the same representation of the Poincare group as 
the original fields and are locally conserved with 
respect to the index ";\," viz. 

oATA,w == O. (2.9) 

From the covariance of TA,w, from (2.9) and m2 ;e 
o it then follows that a meaning can be given (see 
Ref. 15) to a three-dimensional integral over To. w • 
The quantities defined in this way, Qw-we are 
going to call them charges-are translationally 
invariant (see Ref. 15) and transform under the 
Lorentz transformation as geometrical objects 
characterized by the subindices w. It can also be 
shown that 16 

QwU == O. (2.10) 

3. GENERAL RESULTS 

Our starting point to present the results is an 
assertion stated in several papers on different 
occasions (see 1,2,6,7,9). To avoid too many 
indices, we present it below for the case of scalar 
fields only (i.e., n 1/2 == n 1 == n3/2 = n 2 == 0), al­
though it is true-under the assumptions stated in 
Sec. 2-for arbitrarily (but finitely) many fields of 
different transformation character with respect to 
the Lorentz group. We have the following: 

Statement 1: Under the assumptions stated 
before 

no 

(i) i[Qw' cpg>(x)] == ~ k<Jl)CP$Jl(X); 
l=l 

j = 1, ... , no, 
(3.1) 

where kfjO is a numerical matrix in (j, l) and a 
polynomial in - iil; 



                                                                                                                                    

o N S 0 M E PRO PER TIE S 0 F P H Y SIC A L S Y M MET R I E S 2403 

(ii) Q w is uniquely defined by (3.1); 

(iii) [Qw' S] == 0; 

where S is the scattering operator. 

(3.2) 

The proof is given elsewhere (see, e.g., Ref. 1.). 
Of the following conclusions that can be drawn 
from this statement the first one is immediate. 

Statement 2: Qw is always a bilinear expres­
sion in the incoming as well as in the outgoing 
asymptotic fields. 

The other one follows in a slightly more involved 
way: 

Statement 3: Assuming that the fields T".w(X) 
give rise to the charges Q", and that S ;Jt 1, we 
have at least two sets of fields T/f!Pw<x) and 
T~~h ",(x), where AH stands for Araki-Haag, each 
of them is local, is bilinear in and local with 
respect to the corresponding asymptotic fields, is 
locally conserved and gives rise to the same 
charge Qw' 

For Simplicity and clarity of the lecture we shall 
present the outline of the proof for the special 
case of the field T" (x) (no additional indices) and 
for the theory of scalar fields only. 9 The general­
ization for T".w(x) and for different kinds of fields 
will become obvious after this outline is given. It 
will also become clear from the later results of 
paragraph four that there is no need to consider 
other fields than the vector fields T" (x) as the 
carriers of the phYSical syn:metries. 

According to Ref. 17, in addition to the LSZ limit18 
(see also Ref. 14 and 17) for (-7 ± 00 (which be­
haves for large t as (-3/2), there is an asymptotic 
ilmit which behaves like t-3 • We shall call it the 
AH limit. For T" (x) the LSZ limit is zero since 

(3.3) 

so only the AH limit contributes at infinity.19 This 
contribution is given by 

T~~~l(x) = ii dpdp'o(p2 - m2)o(q2 - m 2 )(J(po)(J(qo) 

x 6 6(t/J(P; i), T,,(x)t/J(q;j»¢~iJ+(P)¢e~)(q), 
i j (3.4a) 

where 

(l/I(Pi i), T,,(x)l/l(q; j» 

= ei(Jrq)x(p", + q,,)F;A(p - q)2](J(Po)(J(qo}· (3.4b) 

Here t/J(p;j) are the scalar one-particle states of 
momentum p(p2 = m2) and of kind j'; F;j(k2 ) (de­
fined here for k2 :s 0 only) is a form factor, ana­
lytic in the neighborhood Ofk2 == 0 and for k 2 < 0, 20 

with the following properties21: 

(3. 4c) 

The expression (3. 4a), although locally conserved, 
is highly nonlocal, not only because it consists 

exclusively of spacelike field components, but also 
because of the presence of the form factor (which 
we assume not to be a constant). By proper mani­
pulation it can be shown that (3. 4) integrated over 
three-dimensional space makes sense and yields 
a proper charge: 

Q =- i66F;/0)i(J(Po)O(p2 - m2) 
i j 

x ¢~i)+(P}¢~j,[(P)dP. (3. 5) 

In order to get (3.5) we made use of Statement 2, 
which ensures that the three-dimensional space 
integral of (3. 4b) characterizes the charge com­
pletely. 

We see that the only contribution to the charge 
comes from the point p = q in (3. 4). So we may 
construct a new field out of TJ~r~ by replacing 
Fi/k2 ) by Fij(O). This new field still consists only 
of spacelike components. It can, however, be com­
pleted to a local operator by adding terms with 
momenta lying in the forward and backward light 
cone. The completion is unique as soon as we 
demand that the field be local with respect to cf> ex 

and real. It yields 

i C!cf>{i} 
T~~Mx) = - - 6 6F;j(0) : ~ cf>~J : (x). (3.6) 

IT i j x" 

This accomplishes the outline of the proof. We 
may call T.}~W(x) asymptotic fields to T" (x) in the 
sense of AH in analogy to asymptotic fields in the 
sense of LSZ. 

In general case (3.3) does not hold (see Ref. 19). 
This, however, does not affect our construction. 
In case (3.3) is violated both limits exist; the 
LSZ limit is then responsible for the particle 
properties of T" (x), whilst the AH limit displays 
the symmetry properties induced by T,,(x). 

In the general case when there are several kinds 
of underlying fields involved displaying different 
transformation character with respect to the 
Lorentz group the fields 

are no longer uniquely defined. This is due to the 
fact that the structure of the one- one-particle 
amplitudes of T,,(x), as presented in (3. 4b) and 
(3. 4c), becomes more complicated. E.g., in the 
presence of the spinor field we have in addition to 

T~~~2(1)(x) = - 2im : (a~iji'l/I- ijiaill/i): (x) 

[which is a counterpart of (3. 6)J also 

T(AH)(2) ( ) = + i . a v{:I.( ).,,} . ( ) 
ex." X - 4m' 'f' 'Y,,'Yv - 'Yv'Y" 'f' • x, 

which does not contribute to the charge. Any 
linear combination of these two fields, real and 
properly normalized, yields the same charge. 

A corollary follows. 
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Statement 4: Assume that the field T",.,(x) can 
be expanded in a functional series with respect to 
normal ordered products of the free asymptotic 
fields. Then the contribution to the charge comes 
only from the bilinear term in the free fields of 
the series expansion. 

Thus if (3.3) does not hold and TJHt~c)x) exists, 
we have always 

fd3XT(L~Z) (x) = 0 ex.O.w , 

in spite of locality properties of T".w and TJk~t~w 
as well as 

a (l T(LSZ) = O. 
eX;/l.w 

This also follows easily from the observation that 
each Poincare invariant operator that annihilates 
the vacuum and can be presented as a functional 
normal series expansion with respect to the free 
incoming fields, consists of terms 2-, 4-, 5-, etc., 
linear in these fields. 

4. THE STRUCTURE OF THE CHARGES 

We shall now turn to a more detailed analysis of 
the symmetries obtained on the basis of Statement 
1 by examining the structure of the matrix 
k~ij)( - ia). 

Let us first consider the case when the underlying 
set of fields consists only of scalar fields (Le., 
n l / 2 = n l = n 3 / 2 = n 2 = 0). We have 

Statement 5: Let us assume that no asymptotic 
scalar real fields form an irreducible set, the 
rest of the assumptions listed in Sec. 2 remaining 
unchanged. Let us make the additional hypothesis 
that each of the scalar fields interacts with the 
other fields. 

(i) Then the charges, displaying a spinor 
character, vanish. 

(ii) The set of charges, transforming as tensors 
(Le., WI ••• Wb are vector indices), consists of 
scalar charges (b = 0), vector charges (b = 1), 
which are proportional to the energy-momentum 
vector P ,and of tensor charges of rank b > 1, 
which ale linear combinations of the scalar 
charges, of P/l and of the invariant tensors 0/lV and 
EK"/ll/' 

We would like to stress that for the proof of State­
ment 5, presented below, it is essential that the set 
of underlying fields consists of scalar fields, in 
contradistinction to previous statements. The 
extension of this statement to the case of several 
fields of different transformation character under 
the Lorentz group, listed in Sec. 2, is given later 
(see Statement 6 and Appendix C). However, we 
were not able to give a proof for the general case 
of arbitrary, but finite number of different fields. 

We would also like to emphasize the importance of 
the additional assumption made at the end of State-

ment 5 about the role of the interaction, first 
exhibited in Ref. 3. 

Proof: The first part of the Statement follows 
trivially. In order that the relation 

no 
i[Qa' </>~Q(x)] = ~kJij)</>VJ(x), 

j=1 

where O! == 1,2,3,4 is a spinor index, be consistent, 
kJi j ) has to be a covariant bispinor function. How­
ever, no such function exists. Hence it follows that 

kJij) = O. 

Since {</>eJ form an irreducible set and Q a annihi­
lates the vacuum, 

(4.1) 

The proof can be immediately generalized to any 
case of spinorial charges. 

The case of scalar charges does not require any 
additional comments (see,e.g., I);k(ij) is in this 
case a real, antisymmetric (anti-Hermitian) 
(no x no) matrix. 

The case of vector charges was also treated 
extensively3,7 (see also Ref. 2). It is worthwhile 
to notice that here for the first time one makes use 
of the assumption about the interaction of the fields 
and that this assumption is crucial for the proof. 
All one needs is that there be elastic two-particle 
collisions between different species of particles. 
Then 

k~ij)( - ia) = codal/' (4.2) 

where c is a real number. 

Next we outline the proof for the case of tensor 
charges of rank 2. Mter this is done, it will 
become obvious how to extend the proof to the 
cases of tensors of higher rank. 

We have 
no 

[Q!llI' ;PJ~)(p)] = ~I (a (ik)P/lPl/ + b{ik)gl'V>;P~kl(P), (4.3) 

with /J, V == 0, 1, 2,3. ;p(p) denotes the Fourier 
transform of </>(x). Both a(ik) and b(ik) are indepen­
dent of p, Hermitian, pure imaginary (antisym­
metric) (no x no) matrices. 22 Notice that, although 
ik~t!')(P) of (3.1) is here a Hermitian matrix and 
can be diagonalized, the matrices a(ik) and b(ik) do 
not need to commute, consequently the diagonaliz­
tion of ik)/;k)(P) would depend crucially on the 
choice Of the value of p. This is not only incon­
venient but even makes the procedure useless 
since (4.3) has to be understood in the sense of 
distributions with respect to p. 

Let us choose /J = 0 and v = 1. We get from (4.3) 

"0 
[QOl> ;p ~iJ(p)] = ~ a (ik)PoPl ;P~kl(p). (4.4a) 

k=O 
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Now we may diagonalize the matrix a (ik) by means 
of a complex unitary transformation (notice that 
this transformation does not depend on the index 
ex). Let us denote the new, in general, complex 
fields by 

C~iJ(X). 

Then {4. 4a) reads 

[Qol' qQ(x)] =- A(i)00olqQ(x), 

where ~ (i) are (real) eigenvalues of a (i.k). 

(4.4b) 

The procedure outlined in Appendix B leads us to 
the conclusion that 

~(i) == O. 

Inserting this result back into (4.3) we get 
"0 

~[Q~, ¢~i2(p)] = ~l b(ik)¢J~(p). (4.4c) 

In this way we reduce the problem to the case of a 
scalar charge, this charge being ~Q~ == Q. The 
ansatz 

QI'V = ~gl'uQ~ = gl'uQ (4; 5) 

solves (4.3). The uniqueness of the solution (4.5) 
follows from the assumed irreducibility of the set 
{</> ex} as well as from 

Ql'vn = O. 

This completes the proof. 

The extension of our proof to the case of tensor 
charges of higher rank follows more or less along 
the same lines, using slightly different but simple 
computational tricks and is rather straight­
forward. 

Notice that the linearity of the tensor charges with 
respect to the scalar and vector charges also 
follows from Statement 2. 

As soon as we give up the assumption of Statement 
5 about the irreducibility of the set of scalar 
fields and admit other fields of a different trans­
formation character under the Lorentz trans­
formation, things become involved. We have the 
following statement. 

Statement 6: LE!t us add to the assumptions 
listed in Sec. 2 the hypothesis that all the fields 
under consideration interact with each other. 

Then (i) the commutator of the charge with a free 
asymptotic field is a linear combination of free 
asymptotic fields of the same transformation 
character under the POincare group. (ii) The 
assertion expressed in Statement 5 remains true. 

Notice that we do not assume here that the fields 
</> I'u(x), giving rise to the vector charges QJj' are 
symmetric in the indices jJ. and II (such an assump­
tion was made in Refs. 3, 4, and 7). 

The main idea of the proof is as follows: If S ~ 1, 
then there are infinitely many scalar products 

(Wout,4Iin) ~ 0 

for which 

(>It in' 41 in) = O. 

If we restrict ourselves to y and 41 of the dense 
set of vectors 

where P is a polynomial in the smeared fields, 
then we may conclude from the equality 

([Qw, po~~]n, Pi(~)n) = (p~~tn, [Qw, Pi,*)]n) 
(4.6) 

and from (3.1) that (4.6) leads to a violation of the 
conservation law for energy and momentum, un­
less Qw possesses the nature pointed out in State­
ment 5 (ii) or the incoming and outgoing fields 
coincide (Le., S = 1). The main reason for this is 
that the scattering amplitudes do not factorize into 
products of two-point functions except in a free 
field case. 

In Appendix C we give the outline of the proof of 
the Statement 6 for the caSJ when there is a non­
trivial scattering of two particles. The 'extension 
of the proof to other cases of scattering becomes 
then obvious. 

5. FINAL REMARK 

Let us have a closer look at the results obtained 
so far. 

It is clear from (i) of Statement 6 that the charges 
do not carry a spin, unless there is no interaction 
present. 

Statement 6, which in our opinion can be extended 
to any finite number of fields of any transformation 
character under the Lorentz group, clearly exhibits 
the separation of the internal symmetries from the 
space-time symmetries for interacting systems 
with the smallest mass different from zero.23 It 
seems to be of some interest that this separation 
no longer holds for the case of free fields (no 
interaction present). Let us elaborate on this point 
and consider the two following examples of free 
fields </> and </> Jj : 

i[Q~, ¢(p)] = b¢Jj(P), (5.1) 

i[Q~, <i>u(p)] = - b(gJju - m-2p).lpv)<i>(P); 
and _ _ 

(+) (-) A 
(Q~, !u(P)] = dE).IVAKPK¢ _(P), 

(-) (+)A (5.2) 
[Q~, ¢v (p)] = - dEJjVAKPKcp (p), 

with b and d real (consult Eqs. (C. 21a) and (C. 21b) 
as well as (C. 32b) and (C. 32c) of which (5.1) and 
(5.2) are special cases). Both transformations, 
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(5.1) and (5.2), do not commute with the Lorentz 
group (they commute with the translation group) 
the first one mixing the vector and scalar; the 
other, the vector and skew-symmetric tensor 
fields. Both are unitarily implemented. To see it 
clearer, let us look at the finite transformations 
induced by the infinitesimal mapping (5. 1). We 
have 

¢ -7 ¢' == C¢ + (S/V)a)J¢Il' 

(all¢ll) -7 (all¢~) == - VS¢ + Call¢Il' 

C == cos(b V), 

S == sin(b V), 

V == + [a 2 - (a llpI-I)2 m -2)1/2, 

(5.3a) 

(5.3b) 

and all = (a o, al' a2, a3 ) are the parameters of the 
group. 

Since the free-field Wightman functions are built 
out of two-point Wightman functions, it is enough 
to check whether the two-point Wightman functions 
do not change under the mapping (5.3). This is, 
indeed, the case, e.g., 

W2 (cp') == (0, ~'+(p)¢'(p) 0) 

= (0, (c~+ + ~all¢1l1 (c¢ + ~av¢v) 0) 
== C2(O, ¢+¢O) + ~ allaV(O, ¢;1)vO) 

_ S2 ( PIlPv) -= iC2f\, (+)(p) + i vz allaV gllv - m
2 

f\,<+)(p) 

= i3. < +)(p). 

Thus the mapping (5.3) is unitarily implemented 
by the operators W(ao, al' a2, a3 )· 

We can also find easily the explicit expression for 
the charges appearing in (5. 1) and (5.2), e.g., in 
case (5. 2) we find 

«
+) t-) (:) (.t) ) 

Q'1l = - d€llVKX f PK rpt(pJrpv(p) + rpt(p)rpx(p) 

x o(p2 - m2)e(p)dp. (5.4) 

We can also find the corresponding currents giving 
rise to the symmetries. These currents are local 
tensor fields, locally conserved and relatively local 
to the free fields underlying the theory. 

It is obvious from (5.1) and (5. 2) that these trans­
formations are highly nonlocal. We see from this 
that locality of the current as well as bilinearity 
of the corresponding charge with respect to the 
free fields does not guarantee the induced sym­
metry to be local. ThiS, however, seems no longer 
to be true as soon as interaction is switched on. 

It is well known that local (internal) symmetries 
have to commute with the Poincare group. 3, 5, 6 

The converse statement is, of course, not true, to 
quote only two simple examples of a nontrivial S 
operator, viz., 

or a symmetry generated by the number operator 
of the incoming particles, Nin, viz. , 

eiCl.Ninrpin(X) e-iaNin = eiCl.rph;) + e-i Cl.rpi2, (5.6) 

where cp~) is the positive frequency part of rpw; 
o :5 a < 27T. In the latter case, (5. 6), the fields rpw 
and 

are at least relatively quasilocal, while in the case 
of (5. 5) even that is not true. If we demand, in 
addition to the requirement of Poincare invariance, 
that the symmetry transformation also be TCP 
invariant, both examples are ruled out. 

We claim that in a theory of interacting fields 
eVery Poincare and TCP invariant transformation 
group commuting with the S matrix either is 
strictly local or completely non-local (by the 
latter we mean that it is not even almost or quasi­
local), the local transformations originating from 
generators induced by local currents. Unfortun­
ately we are not able to prove this assertion. We 
may, however, give some arguments in favor of it. 

Let us restrict ourselves again for simplicity to 
the case of scalar fields and vector currents. Con­
sider an arbitrary Poincare invariant selfadjoint 
operator Q which annihilates the vacuum, trans­
forms under the TCP transformation according to 

eQe-1 =- Q 

and can be represented as a functional power 
series normal expansion with respect to the free 
incoming fields. 

Let us denote the term of Q, bilinear in the incom­
ing fields, by Qin' The operator Qin has the struc­
ture of a physical charge giving rise to a local 
unitary transformation for the incoming fields and 
to a local current. 

The operator 

Q - Qin == Qi'n, 

the lowest term of which in the power expansion is 
quadrilinear in the incoming fields (assuming that 
Qi'n '" 0), can also be considered as a generator of 
a symmetry. However, this symmetry is not local 
with respect to the incoming fields. This follows 
from the observation that Qi'n annihilates the one 
particle states as well as the vacuum. Con­
sequently 

If 
(Qi'n, cf>~)]O = O. 

(Qi'n, cf>~J 

could be localized, then the application of Reeh­
Schlieder theorem implies that 

Qi'n == O. 

(5. 5) From that which was said so far we infer that any 
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operator Q, with Qin ~ 0, does give rise to a sym­
metry which is not local with respect to both the 
incoming and interacting fields. The latter can be 
shown as follows: Should 

[Q, ¢(j)] 

be local with respect to ¢' s, this would imply a 
similar relation for the incoming fields, which is 
ruled out by our earlier considerations. 

Although every Q = Qin gives rise to a strictly 
local gauge symmetry for the incoming fields, 
this does not need to be true for the interacting 
fields. This is the part of the assertion we are not 
able to prove. 

Assuming the assertion to be true we get the 
following 

Conjecture Under the premises of Statement 6, 
every physical symmetry acts on the fields locally 
with a finite space-time translation. 

A closer look at the transformations (5.1) and 
(5.2) reveals that the reason for their survival is 
rather trivial. The fields under consideration are 
free fields, thus independent of each other. The 
transformations induce a one-to-one mapping of 
two separate von Neumann algebras of these 
fields. 24 This mapping is disturbed by switching 
on the mteraction among the fields. 

We end with the following observation. The trans­
formations (5. 1) and (5.2) are prefectly legitimate 
for incoming as well as outgoing fields separately. 
Since the Wightman functions for the interacting 
fields can be constructed out of the Wightman 
functions, say, of the incoming fields, so the trans­
formations (5.1) and (5.2) for the incoming fields 
give rise to a symmetry of the Wightman func­
tionals of the interacting as well as outgoing fields. 
It is, however, obvious that 'this particular sym­
metry cannot be termed physical, since there are 
no local fields T "II (x) relatively local to the inter­
acting or to the outgoing fields yielding the corres­
ponding charges. In other words, the charges of 
(5. 1) and (5.2) for the incoming fields do not com­
mute with the S matrix. 
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APPENDlXA 

1. It is well known that each free vector field, let 
us call it A~O), can be uniquely decomposed into a 
spin 1 and a spin 0 part, viz., 

A(O) = ,/0,(0) + a ,/0,(0) " '1'" ,,'I" where 
,/0,(0) =" (g + rn-2a a )A(O)II 
'l'1i j.lII Ii v , 

¢(O) =" _ rn-2avA~0), 

with 
alicp(O) = O. 

" 

(Ala) 

(Alb) 

(A1c) 

(AId) 

Let us now examine the interacting vector field 
A which is supposed to tend, in the LSZ limit14 ,18 

to the free asymptotic fields Am.1' and Aout .I" We 
have the identity 

AI' = m-2 (O + rn2)A1' + ¢I' + al'¢' 

with 
¢I' =" m-2 ( - Og~v + al'a,)Au, 

¢ =" - m-2 avA II • 

Obviously, in the LSZ limit one gets 

(A2a) 

(A2b) 

(A2c) 

,/0, LSZ ,/0, = ( + -2a a )Av 
'I'"t~±ct»'I'ex."-g,,v m "vex' 

and (A3a) 

(A3b) 

The field 

rn-2 (O + m2)AI" 

appearing in (A2a), is local with respect to A and 
vanishes asymptotically. Thus 

A~ =" Ali - rn-2 (O + rn2)AIl 

is in the same Borchers class as A Ii and can be 
used as the interpolating field. Thus we have 

A' =,/0, + a ,/0, 
" '1'1' 11'1" 

with [see (A3)] 

A~x.1' = Aex.}l' 
and 

ali¢}l =0. 

The last equation corresponds to (2. 2). 

(A4a) 

(A4b) 

(A4c) 

Things go Similarly for the symmetrical tensor 
field A j.lII' The decomposition of the free field 
A<,?J into spin 2, 1, and 0 parts reads 

A(O) = ,/0,(0) + a ,/0,(0) + a ,/,(0) + a a ,/,(0) + a ,/,W) 
jiV 'l'j.lII Ii'l'V v'l'ji Ii v'l'1 0liv'l'a, 

(A5a) 
where 

1 ~ 1 ) (0) <t> (0) =" A (0) + - g + - a a a a, A P A 
jill j.lII rn 2 pv rn2 P v Ii '" 

1 ~ 1 ) (0) I ~O) + - g + - 0 0 0 0 ApA - --0 0 A A 
rn2 Pji rn2 p" v A 3m2 "V A 
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,nCO) = _ 2-.10- + _I_a a) a ~Pll 
'I'll m2 \,P" m 2 P II II ' 

(A5c) 

<p(0) =_1_IA (0)A +~aoaPA(O)\ 
1 3m2 \, x m 2 op }' (A5d) 

,nCO) = .!3~'(0»' + _1_0 00 PA(O») 
'I'll \ " m 2 op' 

(A5e) 

The interpolating interacting field A'lJ' equivalent 
to A IlV and local with respect to it, il 

A~v = <Pllv + 01l<P 1I + 0V<P1l + ojloV<PI + gjllJ <PII , (A6a) 

with 

<PjllI = ~4{(O)2AjllI + (- Ogpil + 0pov)ojloAAPA 

+ (- OgP/l + 0pOjl)OIlOAAPA - tojlolJ( - OA~ 

+ 40oaPAap) - tgjlll[(O)2A~ - OoOOPAap]} , 
(A6b) 

<P = - _1_ (- Og + 0 ° )0 APIl, (A6c) 
v m4 pv p II II 

'PI == _1_( - OA~ + 4oooPAop)' (A6d) 
3m4 

(A6e) 

We have also 

as well as 

and 
¢~ = 0 

Ojl¢jlII = O. 

(A6f) 

(A6g) 

(A6h) 

Obviously A 11 as well as A' 11 converge in the LSZ 
limit to Ae/jllJ' jl 

So we succeeded in showing that (2.2-2.4) can 
also be imposed on the interacting fields without 
violation of the locality conditions. 

2. To explain why we omitted in the list of fields 
the representation (1, 0) and (0, 1), let us recall that 
these representations correspond to antisymmetric 
tensor fields: 

(A7) 

If the field (A7) is a free (real) field (with non­
vanishing mass), it can be always presented as 

where A J,O) and BJO) are two independent (real) free 
vector fIelds. The dual to FJJ> then reads25,26 

- 1 Fjl<'?)(x) = 2[a jlB~O)(x) - ° vBJO)(x)] 
m 1 

- m
2 

€ jlllKA oKA (O)A(X). (A8b) 

In case ~lJ is no longer a free field, the field con­
structed according to the recipe (AB), let us call it 
F:II , no longer coincides in general with F v' 

According to (ABa) we define the (interacting) 
fields 

A = - OjlF 
11 yll' 

B = - ojlF - -2
1

€ OjlFKA v jlll - jllIKA • 

Consequently, 

F' = __ I_(oa AF -aoAF ) jlV m2 jl All v Ajl 

+ _1_€ €TAopOK a F 
2m2 IlIlKA T ap 

1 
=- m20AOAFjlII' (A9) 

Of course, F:lJ is local and local relative to F lJ and 
gives rise to the same asymptotic fields. In the 
subsequent investigation, we are mainly concerned 
with the asymptotic free fields, so we may leave 
out the aforementioned cases since these can be 
covered by proper use of the fields ¢J~~ and <pp>, 
respectively, in the asymptotic field. 

APPENDlXB 

According to (44b) we have 

(Bl) 

where we have dropped the indices i and ex. Of 
course, we also have 

(B2) 

If C(x) = C+(x), then X = 0, so let us concentrate on 
the case where C is complex. 

Assume that there is an elastic scattering between 
particles and antiparticles described by the fields 
C and C+, different in the forward and backward 
directions; specifically, that the amplitude 

1 2 3 4 
[u6ut (P)vbut (p)n, uk(P)vk(p)n] '" 0, 

where 
1 2 3 4 
P + P = P + p, (B3) 

and u, IJ, and u+, IJ+ are annihilation and creation 
operators for the particles and antiparticles, 
respectively. Taking into account (Bl) and (B2) we 
have 

1 2 3 4 
(U~ut (p )V~ut (p)O, Qolutn (P)vtn(p)O) 

11 22 1 2 3 4 
= - X(PoPt - PopiHu6ut (P)v6ut (p)O, utn (p)vtn (p)O) 

3 3 4 4 
= - A(PoPI - PoPl) 

1 2 3 4 
x (u6ut (P)v6ut (p)n, utn(p)vtn(p)O). (B4) 
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From (B4) it follows that either A = 0 or 

= (B5) 

or both. 

Taking into account (B3) it follows from (B5) that 

(B6a) 

However,#,p!,P~ > 0, thus 

P2 _p4 
o 0 < 1. 

P; + pJ 
(B6b) 

On the other hand, the choice of momenta p1,p2, 
p3, and p4 lying in the closest (open) neighborhood 
of 

pi + P~ = 0, 

pi = pi -;t 0, 

p~ = Pr, 

violates (B6b). Thus we have shown that A = O. 

APPENDIXC 

To prove Statement 6 we have to prove it for every 
kind of spinor and tensor charge separately. 

1. We start with the scalar charge, for which the 
matter is easy. Since the commutator of a scalar 
charge with a field transforms in the same way as 
this field and since there are no numerical func­
tions, transforming like a spinor, the commutator 
of scalar charge with a tensor field is a linear 
combination of tensor fields, and with a spinor 
field is a linear combination of spinor fields. 

Let us consider 
no n1 

iQ<P~iJ(f)Q = E k(il)<pJ~(f)Q + Ek~il) <PJQJt(f)Q 
1~1 1=1 

+ etc. 

no n1 

iQrp~iJ./I(f)Q = L;q~il)q;~I~(f)O + L; qW)q;~lkv (f) 0 
1=1 1=1 

+ etc. (el) 

Q commutes with the Poincare group, so it has to 
commute with the Casimir spin operator ",'2. If 
we apply W2 to both sides of (el), take into account 
that we deal with a superposition of one-particle 
states of definite spin [eigenfunctions of W 2 with 
eigenvalues J(J + l)], it fOllows, by comparing the 
expression obtained with (Cl), that 

no 

iQ<P~iJ(f)Q = l]k(il)<P~~{f)O, 
1"1 

n1 

iQ<P(i) (f)O = 6 q(it) 1>,(1) (f)O etc. (C2) 
ex.~ 1~1 eX.1l 

The (ii) of Statement 6 does not need any comment. 
Similar reasoning can be applied in the case of 
spinorial fields. 

2. Before we move on to examine the spinor 
charges we make the following obvious remark: 
the fields of integer and half- integer spins do not 
mix in the linear expression for a commutation 
of a charge with a field. 

In the case of spinor charges the relations (3.1) 
read, e.g., 

n l / 2 

i[Qa.<p(i)(x)] = E gJ~a)"'Ja)(x), 
a=l 

no 

i{Qa.~Ja)(x)} = - ~[g(la)(iyvo" + m)]aB<P(I)(x) 

n1 

+ L;[h(at)( - iy"O" +m)YM]aB!jI~t)(x), 
t=1 (C3a) 

where 
g(ia) = a (ia) + y5{3(ia) = gOa), 

(C3b) 

and where <p and '" stands for <Pex and "'ex' There 
are three more relations corresponding to 1/>11' "'II' 
and 1/>1111 ' 

To outline the proof and to avoid inessential com­
plications, let us concentrate on a ~cial case of 
(C3) when {3 = {3' = O. The matrix 21a (ia)a (La) 

is real and Hermitian and can be di'ltgonalized to 
g(d 1)il[g(i) is real] by a real orthogonal trans­
formation. We submit the fields I/> as well as a 
to this transformation and denote the new quanti­
ties by $ and &, respectively. We also introduce 
the auxiliary real free fields 

L;a (ia)1/I (a)(x) = g(i)jj;W(X), (C4) 
a 

which satisfy the canonical antic om mutation 
relations. In terms of ~ and 1;; (C3a) can be re­
written as27 

i[ Q, ¢(;)(x)] = g(j)~(i)(x), 

i{Q,\b(O(x)} =-g(i)(iy"o" + m)~(i)(x) 
+ L;h(at)( - iy"o" + m)yfll/>(t)(X). 

t II (C5) 

Hereafter we shall drop the index i as well as the 
"hat" for notational convenience. Let us consider 
the matrix elements 

- - -
[liIci,out(p1 )'ifit.out (p2)Q, Qy ¢Jt(p3) 'ifitin(p4 )Q], 

~ ~~ 

(¢dut(p1 )¢6ut(p2)O, Qy¢it (p3)Vlo.in (p4 )0). (C6b) 

From (C6a) we get, assuming that g is different 
from zero, 

k}cPOB;OO - k~aSao;oo 
== Y?p Sa/3;po - (- y"p2 + m)yoSa/3ioo 
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h(t) 

+ ~ g kipY~oS~~);Ofl + (two further terms 

depending linearly on 8') == L,W;yo == L~~), etc. 
(C7) 

From (C6b) we get 
4 

SYO;06 + Soy;oo = Soo;yo - [1'0(_ yVpv + m)]yoSoo;oo 

+ (one term depending on S') == Li71 == Lf2) etc., 
(C8) 

with 
~ ~ 2 _ 3_ 4 

S a/3 ;00 == [Jttd".out(p 1 ) Jtttout(p)O, rt>~(p)qiMp) 0], 
.::. 1-=- 2 -=- 3.::. 4 

Saa;yli == [lfid".out(p)'lttout(p) 0, Jtt:.in(P)lfio~in(P) OJ, 
- 1- 2 3 4 

S~~);Ofl == [~:'out(p)~tout(p) 0, ¢+(P)¢51)+(P) OJ, 
(C9a) 

_ 1_ 2 _ 3_ 4 

Soo;oo == [rt>;ut(p)rt>;ut(p) 0, CP~(p)CP~(p) 0] etc., 
j j j 

kaB == (yvPlJ + m)aB == k/3' (C9b) 

Equations (C7) and (C8), viewed as a system of 
linear algebraic equations, 

1 2 
LJ~ = k.aS o/3:oo - kaS(I.O;oo, 

1 2 
LJlJ = k as oa;06 - kaS ao;oli' 

LJ2) = Soa.;oo + Sao;oo' 

LJ2) = S08;01i + Sa 0;00' 
1 2 

yield the solution for P -;t! P 

(C10) 

2 1 121 
Da/3Sao;oo = LJ!) ka - LJ21ka + [LJ2)ka - LJ2)ka]ka, 

2 1 2 1 2 
D S - L(1)k + L(l)k - [L(2)k - L(2)k ]k aB· oa;oli - 0:/3 0: ao: 0: 0: /3 8 a 0:' 

1 1 2 2 
Daa = kaka - kcfla(no summation over 1'). (Cll) 

The solutions (Cll) should not depend on the 
choice of f3 and y, so we may choose a = {3, and we 
have 

2 1 1 
Daa.Sao;oo = (ka - ka)(LJ~ - LJ2)ka), 

1 2 2 
Da~oa;oo = (ka - ka)(LJ&"J + LJ2)ka) 

If we insert (C12) back into (C10) we get the 
relation 

1 
k 2 

2 a 1 (La) + LJ2)k[l) 
k[l + k[l 2 

k 1 
+ 2 6 1 (LJ~ - L ~2)ka) = LJ!). 

ka + ka 

(C12) 

(C13) 

Equation (B13) suggests that it should be possible 
1 2 

to split LJ!) /ka k B into a sum of two terms each 
depending only on a or (3, separately. For the case 
of free fields, when 

Sa8;oo=S~/:l;OjJ =0, etc., (C14) 

this can be accomplished because of the factoriz­
ability of the Wightman functions. In the case of 
interacting fields, however, even if (C14) holds, this 
is not possible since So:s;yo etc. do not factorize. 

Thus g = O. 

In case (C14) does not hold we also have 

(C15) 

If, however, (C14) holds, we have to repeat our pro­
cedure for other choices of the S- matrix amplitude 
to get a contribution from the terms in (C5) in­
volving h(at). One can show along the same lines, 
mutatis mutandis, that then (C15) follows. 

This accomplishes the outline of the proof claim­
ing that spinor charges do not exist in the case of 
interacting fields. 

A similar proof can be presented in the case of 
spinor charges of higher rank. 

3. We shall now explore the case of vector charges. 
In this case the relations (31) read: 

i[QjJ' CP(i)(x)] = a(ik)ojJCP(k)(x) + ib(im)rt>jJ(m)(x), (C16a) 

i[QII' rt>Js)(x)] =- ib(ks)(gllu + m-2ojJo)rt>(k)(x) 

+ c(sm)o q,(m) + d(sm)E oK..I.(m)A(x) 
II v IlUM 'i" 

+ if(sz)..I.(z) (C16b) 'i"jJU' 

i[Q[J'CPW(X)] =- jf(sZ)[(gIlK + m-2a[J0K)rt>~S) 
+ (g[JA + m-2 0 II 0 A)CPK(S) 

- %(gKA + m-2 OK ° Altf>Ss)] 
+ k(ZY)o"CPV)(x). (e16c) 

To get (C16) we used Jacobi identities as well as 
properties of the fields. We also get the additional 
relations 

i[QII,o~rt>Js)(x)] =- m 2c(sm)rt>U(m) (x), 

i[ QII' OJ.lcp~~)(x)] = - m2k(zY)qJl~(x), 

(C17a) 

(C17b) 

as well as that a(ik), c(sm) and k(zy) are real Her­
mitian matrices, d (sm> is real but anti-Hermitian 
and b(im) andj(sz) are imaginary. We diagonalize 
the matrix a(ilq by a real orthogonal transforma­
tion. The standard examination of 

[<i>~~; (Pl)<i>~l~t (p2)0, Q II ¢~3)+(P3 )<i>~4)"(p 4)0], 

taking into account the energy-momentum con­
servation,2,3 yields 

a(ik) = oika, a = ii. (CIBa) 

A similar procedure applied in the case of c(sm) 

and k (zy) yields 

c(sm) = osmc, c = c, (CI8b) 
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k(zy) = oZ.yk, k = k. (Cl8c) 

If the incoming and outgoing fields are properly 
normalized, it can be shown that 

a = c = k. 

We define 

(C22) [1>: t(P 1)1>: t(P2)n, Q~1>~m' (h)1>tn(P4)n], 
ou' ou .. 

and 
[1>6ut (h)1>6ut(P2)n, Q~ ¢t

in 
(P3)¢~(p4)n]. (C23) 

Q~ = QIl- aPIl , (CI9) M~t) = SAO;/LO + SOA;1l0 ' 

(C24) 

(C25) 

then (Cl6) reads as follows: 

i[Q~, cp{i)(x)] = ib(im)cpJm)(x), 

i[Q~,cpiS)(x)] =-ib(kS)(g/LV + m-2all oV)cp(k}(x) 

(C20a) 

+ d(sm)E aK,f,(m)A(x) + if(sz),f,(2) 
/L~K ~ ~V' 

i[ Q~, cpW(x)] = - if (S2)[ (gfJ K + m-2 a I' a K ) cp(~) 

+ (gilA + m-2 a fJ 0 v)¢~s) 

(C20b) 

- ~(gKA + m-2 aKa A)¢?)]' (C20c) 

The terms contaming b (im) interchange vector and 
scalar fields, the terms with 1(S2) intertwine 
tensor and vector fields, while the correlation 
between the vector fields and the antisymmetric 
tensor fields 

aF/wm) = 0 

F(m) = m-2[a ,f,(m) _ a ,f,(m)] 
IlV fJ~V v'f'fJ' 

aF~m) = - m-2 cpJm) 

manifests itself in the terms containing d(sm), 

There is no interchange between scalar and 
tensor fields, 

Our first task is to show that bUm) vanishes if 
there is an interaction present. For this purpose 
we cast the first two relations (C20) in the form 

i[ Q~, ~m)(x)] = - b(m)(gfJV + ~ a /L a v>$<m)(x) 
m 

+ d(ml)€fJVKA a A<p(l)k(x) + i!(m2)cpVJ(x), 

with 

-~b(il)b(im) = [b(m)]2 01m, b(m) - real, 
i 

b(im)s(ml)-l == b (il), 

'" (m)s(ml)-l == :t.l 
't'fJ . 'f'fJ' 

cp (i)b(im) = ¢(m), 
s(mr)d(rs)s(sZ)-l == drs 
s(ms)j(sz.) == !(mz). 

, 

(C2lb) 

(C21c) 

Let us investigate more carefully the expression 
(we drop the index m as well as the "hat" in the 
following): 

with 
3 3 

ibM~PfJV = + ibkjlVSKA;OO + d(l)E~J'PpS~\l?oo 
+ ibS +1(2)S"(2) 

• KA;/LV KA;V,/L,O 

+ further terms depending on d and 1, 
(C26a) 

j 1 J 
k = -2pp /Lv -gIL" - m fJ v (C26c) 

and 

SVO;1l0 == [¢~ut (Pl)¢~ut(p2)n, ¢tin (P3)¢~(p4)n], 
etc. 

Now (C24) and (C25) for K = A can be solved with 
1 2 

respect to 50A ;jlO and 5 AO;/10 for PI" ;;<' P/L' Since 
these quantities do not depend on the value of v, 
we may put v = J.I. So we get 

(C27a) 

1 1 
5,..0;/L0 = 1 2 [kVAM~~ - M~Il/l]' 

~A - ~A 
(C27b) 

(C25) is automatically satisfied by (C27)j however, 
(C27) inserted into (C24) impose restrictions on 
the form of M£P

Il 
v' viz., 

(C28) 

(C28) suggests that the lhs can be split into two 
terms each depending on K and A separately. The 
case M(l) = 0 is obviously ruled out. A careful 
examination of M(l), taking into account is depen­
dence on the momenta, leads to the conclusion that 

1 2 
the term SKA;1l j~K k VA should decompose into two 
K- and A-dependent parts, provided b ;It O. But this 
is only true for the case of a free field. In fact, 
(C28) is satisfied in the absence of interaction. So 
in the case of interaction 

b = O. (C29) 
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Similar considerations extended to (C20b) and 
(C20c) result in29 

j(SZ) :::: O. 

Eventually we are left with the relation 

i[Q~, q,(s)(x)] :::: d(sm)€IlVAKoK q,(m)A(x). 

(C30) 

(C31) 

To show that d(sm) vanishes when interaction is 
present, we diagonalize id(sm) by a complex unitary 
transformation. .After some manipulations we get 

i[Q~,(*(ct)(X») :::: 0, 

i[Q~.c¢!B)(x)]:::: d(B)€IlVAKOK(1»(B)\ 

(-) (+) 
i[Q~, q,,,(B)(x)]::::- d(B)€IlVAKOKq,(B)\ 

where 

/l' :::: 1 ... r l' {3:::: 1 ... r 2' 

(C32a) 

(C32b) 

(C32c) 

r 1 + 2r2 = nv d is real, 
(0) (+) (-) 

and q" q, , q" are real free vector fields. 

To proceed further we assume that 

* Supported in part by A.E.C., under contract No. AT(30-1)-
3668B. 

t On leave of absence from the Institute of Theoretical Physics, 
University of Wroclaw, Wroclaw, Poland. 
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A similar procedure applied to the case of fer­
mion fields also leads to (C33). In this case the 
computations can be simplified considerably by 
making use of the fact that the free spinor fields 
satisfy the equation 

(iyll all - m)1J; :::: O. 

The terms like y51J; are then separated immedi­
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As soon as we know that there are no spinor 
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holds generally, applying to the case of Q"l"'PIt' 
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X I; Z(la) cp(l) (x) 

/<1 n, 
+ [(1 + i r5)(- i1'VOv + m)r"L,q L; z'(a')cp~tl(x)~ 
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It is shown that the wavefunctions of the a-function I-body problem are simple enough to allow an ex­
plicit evaluation of the cluster operator Ul • Upon integration one can then obtain the general cluster 
coefficient bl • The I = 2 case is explicitly solved for particles of any statistics. 

INTRODUCTION 

Since the first rigorous results by 1;..ieb and Lini­
ger, l considerable interest has been devoted to the 
study of the energy levels of N particles in one­
dimension interacting via the two-body potential 
2ca (Xi-X). The latest developments have led to the 
formulation of the thermodynamics both for Bose 
and Fermi statistics for any value of the coupling 
constant c. The basic assumption one makes is 
Bethels ansatz for the wavefunction of the system; 
in the fermion case further assumptions about the 
counting of the states are needed. The ultimate 
justification of the whole procedure lies in the pos­
sibility of checking the results in the well-known 
(and trivial) limits of zero and infinite coupling 
constant and in the claim that by "continuity"- the 
results should hold true also in between. Since 
such continuity arguments are never forCing, an 
independent and rigorous check would be quite 
welcome. 

With this motivation in mind,we present a rigorous 
way of computing the second cluster coefficient of 
the a-function systems for any value of the coupling 
constant c. Agreement is found with the results of 
Ref. 2. The method, making use of the U functions 
introduced by Lee and Yang, 3 can be applied to the 
evaluation of cluster integrals of any order. 

1. REPULSIVE INTERACTION (c > 0) 

A. Boltzmann Statistics 

We recali3 that the second virial coefficient b2 is 
given by 

b2 = ~{: d~ (0, ~IU210, ~), (1) 
where 

(0, ~ lu2 10, 0 
~ (0, ~ I w 21 O,~) - (0 I w 11 O)W w 11~), (2) 

(0, ~ I w2 1 0, ~) 

J+OO dk 1 J+oo dk 2 
~ -2 -2 / >Irk k (0, ~) /2 exp[- (3(k~ + k~)], 

- 00 7f - 00 7f I' 2 (3) 

WWll~) =:0 {CO dklllJtk(~)12e-B.ti'=_1_ ~..!.. 
-00 27f 1 ../47f{3 A' (4) 

-¥ (x) is the plane wave ei"-J.x and -¥~;k (xl> x 2) is 
th~ scattering solution of the two-bod~ problem 
labelled by the incoming momenta. 

One can easily prove that 

x {e-ilk2-kll~-Xr)/2[e(x2 - Xl) + Te(x1 - x 2)] 

+ Re ilk2 -kjIC,'..!-x,.)/2e(x2 - Xl)}' 

with the reflection and transmission coefficients 
given by 

R ~ ic / ( / k 2 - k 1 1- ic) 

and 

T ~ Ik2 - k11/(lk2 - k11- ie). 

A straightforward computation shows that 

(0,~IU210,~) 

= _I_em I.E:. + 2 f!r Joo dT e-Br2 (e-..;2if,r ie 
(27f)2 L{3 V f, 0 .J2T - ie 

+ e V2iEr - ic ) + 2 f!i foo dTe-B~ e
2 

] 
.J2T + ic V~ . 0 2T2 + e~ 

+ _1_ e(- W' rr Joo dU-BT2 2T2 (5) 
(27f)2 ~ f, 0 2T2 + e2 

and, upon integration (remembering c > 0), 

b2 

= - 1 ( f[B e8 c2/2 f C
/
Y2 dp e-Bp2 _..l (eBc2/2 - 1~ . 

2A \v -;- 0 .J2 'J 
B. Bose Statistics (Spin Zero) 

By adding a superscript B to the various quantities, 
formulas (1)- (4) remain otherwise unchanged. How­
ever,now1 

>Irkj ,k:2(X2 ,X1) = -¥kj ,k:2(X1 ,X2) = a exp[i(k1x 1 + k2x 2)J 
+ (3 exp[i(k2x 1 + k1x 2)], x 2 2: Xl 

where 

(3/a = - [c - i(k2 - k1)]/[e + i(k2 - k 1)] 

and 

lal 2 + 1{31 2 = 1. 

Indicating with the superscript (0) the ideal (e -7 0) 
limit, one finds 

(o,~lu:flo,~)-(o,~lu:f(O)lo,O 

= -1 ~2ceclfl roo dT exp(-T2/2{3-eT) 
(27f) 2 (3 • I f I 

(6) 

from which follows 

b! - b:f(O) 

= - 1 (J'f!- e Bc2/ 2 foc/V2 dp e-6P2 -...!.. (e Bc2/ 2 - 1)\ 
A 7f ../2 'J 
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with 
b~(O) = 1/2v'2A 

C. Fermi Statistics 

For fermions we should, depending on their spin, 
count the relative phase space of spacial symme­
tric and anti symmetric states and weight accord­
ingly the sum over states of the two types. We 
shall instead simply compute the sum over anti­
symmetric states (labeled by the superscript A) 
or, equivalently, consider fermions of one species. 

Using the formulas of Ref. 3, one has the relation 

(0, ~ I U~lo,~) = 2(0, ~ lu2 10, 0 - (0, ~ I u~lo, ~), 

which implies 

remembering Eqs. (5) and (6), one sees that 

[as expected since the 0 CO potential does not affect 
a wavefunction that vanishes at ~ = O. Note also 
that bt = limC->«lb~.] 

D. Higher Coefficients 

The calculations we have presented are, to our 
knowledge, the only nontrivial cases in which one 
has been able to compute explicitly the U2 func­
tions. It may be interesting to look into the higher 
U's. We present the results for Bose statistics. 

By straightforward computation the U! function 
is found to be 

where (YV Y2'Y3) is the permutation of (xl'x2,x3) 
such that Yl :5 Y2 :S Y3. 

Looking at Eqs. (6) and (7), one can easily induce 
the functional form of the general U f; less obvious 
is the pattern for the numerical coefficient for 
which one must go back to the details of the cal­
culations. We then guess: 

I .. .. , x IUBlx ... x) _I .. ... x I UB(O) Ix ... x) 
VI-" , I I l' , lVI-I' , I I l' , / 

= _1_ (.!!.) 1/2(1_ 1)! (_ 2C)I-1 exp[c(y - Y )] ["0 d~ (exp _ ~~-l - c~ \ 
(21T)1 {3 1 1. YI-Yi-l /-1\' 4{3 I-~ 

roo ( ~~-2 ) J JOO t ~1 ~ _~(~1 + ·4·{3· + ~1)2) , X . d~/_2 exp - -4{3 - C~I-2 ••• _ d~1 exp - 4{3 - C~1 exp 
YI-I-Y/-2 Y2 Yl 

where (y l' ... , yz) is the permutation of (x 1> .•• , x z> 
such that y 1 :S Y2 :S .•• :s y/. The general bl can 
then be calculated by quadratures. 

2. ATI'RACTIVE INTERACTION (c < 0) 

It is well known 4 that there exists only one N-body 
bound state with binding energy Eo = - c 2N(N2 -
1)/12 and that the corresponding wavefunction is 
symmetric. Besides, in N-body scattering, if one 
analyzes the asymptotic states according to chan­
nels of given number and type of bound states, the 
S matrix is known to be diagonal in the channel 
label. It is then quite natural to analyze the general 
U/ by identifying the contributions from the various 
channels. 

If there are asymptotically no bound states, the 
evaluation of the sum over states runs completely 
parallel to that in the case of repulsive interaction. 
If, instead, there are bound states, modifications 
are needed 5 which amount to replacing some real 
and distinct pseudomomenta with clusters of com­
plex pseudomomenta all with the same real part 
and distributed symmetrically around the real axis. 

The sum over states is then just an integration 
over all the possible real parts. 

From this outline it is evident that one can, in 
prinCiple, compute any Uz(with any statistics), 
although he would quite soon find it very tedious. 
We shall briefly present the results we have 
worked out. 

A. Boltzmann Statistics 

(0,~IU210,O=2~2~{3 eBc2/2[e-cteco +ecte(-~)] 

+ the whole right- hand side of (5), 

b = _1_(e Bc2/2 -1) 
2 ..J2A 

+ ~ IlfFeBC2/2 j-c/..fjp e-Bp2 _ ~ (eBc2/2 _ 1») . 
2A \'11 7T 0 v'2 

B. Bose Statistics (Spin Zero) 

(0, ~ I u~lo, 0 - (0, ~ I U~(O)lo,~) 

= -- -2ce clgl dT exp---cT 1 1T J 1 fl (T2 ) 
(21T) 2 {3 - 00 2{3' 
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b~ - b~(O) 

_ ..J2 (eBc2/2 - 1) + 1(· !¥eBc2/2 r- c /;i2 dp e-Bp2 - ~ ~ V -:tr )0 

- Ji(e Bc2/ 2 -1», 

with 

where (Yl'Y2'Y3) is the permutation of (x 1,x2,x3) 
such that Y 1 :s y 2 ::s y 3 • 

The third viria"t coefficient b~ can then be com­
puted by quadratures. 
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I). Higher Coefficients 
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A classical Lorentz invariant completely Hamiltonian elementary one-particle system is defined as 
having a state space K in which the Poincare group acts transitively, its infinitesimal actions having 
generating functions relative to some Poisson bracket, such that there can be associated with each state 
k a world line r(k) in Cartesian 4-space. It is determined that there are nine families of such particles. 
Two have their speed in the usual range, three travel at the speed of eight, and four always faster. In 
each family the members are distinguished by one or two parameters such as mass and spin. 

1. INTRODUCTION 

A one-particle system which is invariant (under the 
inhomogeneous Lorentz, or Poincare, group CP) has 
a space of states K in which CP acts. For an ele­
mentary particle we require this action to be 
transitive. The notion of one-particle system re­
quires that it should be possible to infer from each 
state k a world line r(k) in Cartesian 4-space in a 
coherent way. 

We classify here all such systems which satisfy 
the condition of complete Hamiltonicity which 
means that there is on K a Poisson bracket { , } 
and ten functions hv ... ,hlo which are "gene­
rating" functions for the actions of the ten infini­
tesimal generators of CP. 

The result is that there are nine families of such 
particles. Two types have their speed in the usual 
range, three travel at the speed 1, and four always 
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faster than that. In each family the members are 
distinguished by one or two real parameters such 
as mass and spin, or helicity. 

The space of states K is in each case a coset space 
of (I' modulo a subgroup S which can have dimen­
sions four or two but not zero. 

For seven of the families, the subgroup S is the 
same for all members. 

This study is suggested by (and indeed more 
elementary than) the corresponding wave-mech­
anical classification of Bargmann and Wigner.1 It 
would be desirable to formulate a correspondence 
principle to relate the classifications. 
An earlier paper of ours2 dealt with the same 
problem as the present one with these differences: 
(1) The "one-particle" system is there (but not 
here) defined in a way forcing the speed to be less 
than 1; (2) the study was there limited to those 
systems for which K is connected. 
When K is not connected, it can have two or four 
components which are permuted by space and 
time reflections. 

For the familiar point particle, K is R6, the real 
six-dimensional space. The other particle with 
speeds less than 1 has K = R6 X S2, where S2 is 
the familiar unit sphere. The quantum analog of 
this particle is the Dirac system. 

Mathematically, in the terminology of Ref. 3, the 
content of the paper is as follows. A CP-invariant 
system is a CP-space. An elementary invariant 
system is a homogeneous CP-space. However, a 
completely Hamiltonian CP-invariant system need 
not be a IV-symplectic homogeneous space be­
cause in our concept the symplectic structure 
(or the Poisson Bracket) is not necessarily pre­
served by the elements of CP not in the component 
G of the identity. If we drop down to G we lose 
the transitivity, but each of the connected compo­
nents of the space are G-symplectic homogeneous 
spaces and hence by Ref. 3,5.4.1, we have four (or 
less) covering spaces of orbits in 9' (the dual of 
the Lie algebra of G). These orbits have to be 
suitably related to each other. 

The definition of our concept is now completed by 
giving a definition of one-particle system. For us 
this consists in requiring an equivariant map of the 
CP-symplectic homogeneous space into the CP-in­
variant system of straight lines in R4. The equi­
variance is not CP-equivariance but E-equivariance 
where E is the subgroup generated by the Euclid­
ean motions and time translations. Our results 
consist essentially in an enumeration and des­
cription of the possible orbits in the dual of the 
Lie algebra which allow this equivariant map, and 
a determination of when it can be chosen (I'-equi­
variant. 

2. INVARIANT,ELEMENTARY, n-PARTICLE 
SYSTEMS 

For dynamical systems we adopt the concepts and 
notation of Ref. 4, pp.157-58. Thus a dynamical 

system has a state space K and for each two co­
ordinators ("Observers"?) x and y we have the map 
Ai of K onto K. Invariance is defined by asking 
that A~% depends only on the space-time group 
element a. By an n-particle system we mean a 
system (K, A) where, for each coordinator x, there 
is a mapping 

(2. 1) 

where en is the class of n-tuples of curves in lR4 , 

and [x has the property 

a-10 [x = [XO A~ox (2.2) 

for every a in that subgroup E of the space time 
group in R4 which is generated by the time trans­
lations and the Euclidean motions. As our space­
time group in this paper we take the Poincare 
("inhomogeneous Lorentz") group CP. 

An example of an n-particle system is an n-part­
icle interaction as presented in Ref.4, p. 157. We 
use the notation employed there and [x as x . 
(Ax)-l. For k a state (Ax t 1 (k) is the set of curves 
in space-time for which k are the initial condi­
tions relative to the coordinator x. We then use x 
to map those curves into JR4. This is the meaning 
of [x(k). [In this example, [x(k) is the same for 
all x.] For the right side of (2.2), k' = A~o)k) 
would be the transformed initial data and fx(k') 
would be the corresponding curves in R4. It is to 
be expected that they should be a-related to [x(k). 
[A perfectly rigorous proof of (2.2) for this ex­
ample begins by observing that AXoT = AxoT, re­
placing Tby x-1oaox,and using (2.42) of Ref.4.J 

In this example, for each x, the set of curves [)k) 
completely determines k, that is to say, r% is one­
to-one. It is this one-to-one-ness which we wish to 
relax in the present paper. Furthermore, in this 
example, (2. 2) holds for every a in (1'. We wish also 
to show that the weaker requirement [namely (2. 2)J 
does allow some extra particles. 

In an invariant system, the notation U(a) for A~'% 
is justified, and U(OT) = U(a) U( T). Thus CP acts in 
K. If this action is transitive, the system is ele­
mentary. 

For an invariant system,(2. 2) says that 0 'rx = rx ' U(a) 
for all u in E. In the case of an invariant system, 
K can be identified with the space CP/S of cosets 
uS of some subgroup S of <P. The action of <P in (9/S 
is just such that T sends as into TaS. There re­
mains only the algebraic question of the existence 
of some map [satisfying (2.2). We note the fol­
lowing. 

Suppose S contains a one-parameter group of 
translations. Then r(S) must be invariant 
under these translations, and, if r can be de­
fined at all, the curves r(aS) are (straight) 
lines. If S contains a two-parameter group of 
translations, no r is possible. (2.3) 
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This is fairly obvious, for if T is a translation, we 
must have Tr(S) = n TS) = nS) if T is in S. 

U S is contained in E(l) x 0(3), the subgroup 
generated by time translations and reversal 
and the orthogonal group, then r can be de-
fined. (2.4) 

Indeed let r(aS) be the image under a of the x4 
axis in IR 4 (the time axis). This r has property 
(2.2) for all 0, not merely in E. Such particles may 
be called completely relativistic. Their general 
theory is simple. r can be found precisely if there 
is a curve c in 1R4 left invariant by S. 

Thus examples can be made in which the curves 
c are helices. [In the next section a condition will 
be imposed which implicitly, although not explicitly, 
forces the r(a5) to be straight lines. J 
Some rather natural examples of totally relativistic 
invariant elementary one-particle systems can be 
obtained as follows. Let T, S, L be, respectively, 
the class of timelike, spacelike, lightlike lines in 
JR4 relative to the Minkowski metric (xl)2 + (x2)2 
+ (x3)2 - (x4)2. By affixing a subscript 0 to any 
of these symbols we mean the lines of the class 
which go through the origin (0,0,0,0). The group 
(J> acts in everyone of these six spaces (when the 
o is affixed we use only the Lorentz part of the 
element of <P). Thus <P also acts in TXT, T x So' 
etc. Thus we have here many invariant systems. 
It is not hard to see that it acts transitively in 
To x L, T x Lo, SQ x L, S x Lo' Hence these are 
elementary systems. Finally, in each of these four 
cases define no:, (3) to be either 0: or {3 according 
to whichever factor has not the suffix O. This gives 
one-particle systems. The state spaces are eight 
dimensional. 

The case T x Lo is the most interesting, and we 
mention the following properties: 

T x Lo is equivalent to T1 (1R3)0 X 52. (2.5) 

Here T1(JR3)O is the space of (bound) vectors in JR3 
of length less than 1 and S2 is the 2-sphere (unit 
sphere in 1R3). Actually, T is equivalent to T1(JR3)O 
as follows. Take a line ~ in T. It hits the plane 
{x4 = O} at (a l ,a 2, a3 , 0). It has direction com­
ponents (b l , b2, b3, 1), where L; 1 b i 12 < 1. Also, 
Lo is equivalent to S2. Take a line ~ in Lo' It has 
direction components (cl , c2 , c3 , 1), where now 
L;1ci/2=1. 

Now there is a standard way in which the Eucli­
dean group E(3) acts in Tl(R3) and in S2. 

The action of E(3) in Tl(JR3)O X 52 induced 
by the action of <P in T x Lo via (2. 5) is the 
standard one. (2.6) 

There is a more or less standard way for <P to act 
in Tl(R3)0 (cf. Ref. 4, 2. 7, with A = 0). In fact 
this action is derived by contemplating the pre­
ceding equivalence of T and T1(JR3)0. 

3. COMPLETELY HAMILTONIAN SYSTEMS 

As in Ref. 5, we call an invariant system a com­
pletely Hamiltonian system if the infinitesimal 
dynamorphisms have generating functions relative 
to some Poisson bracket. This Poisson bracket is 
then necessarily preserved by the component of 
the identity of the space-time group, but not neces­
sarily by all of that group. (For example, for afree 
particle, time inversion reverses the sign of all 
Poisson brackets.) 

Differentiability is implicit in the concept of 
Hamiltonicity. Hence it is natural to require for 
elementary systems not only transitivity but also 
local transitivity (Ref. 5,3.8). 

We begin our investigations by first studying 
"systems" in which the group that acts is not <P 
but the component G of the identity in <p. For ref­
erence, we call this concept a 

G-invariant, completely Hamiltonian element-
ary one-particle system. (3.1) 

Such a system is a 

G-symplectic space (3.2) 

in the sense of Ref. 3,5.5 and satisfies the hypo­
theses of Ref. 3, Corollary, p.192. Thus one could 
obtain at this point the conclusion of Ref. 3, 5.4.1 
[which we do in fact establish in (3.7''') below.] 
This would give us a Maurer-Cartan form that 
would have to be related to the Poisson bracket. 
The computations involved can easily be rearrang­
ed to give instead a proof of (3.7''') based merely 
on Ref. 5. 

A number of definitions and observations are need­
ed before we can present even a partial version 
(Theorem 3.1 below) of the results. Let 

A123,A13l,A1l2,A14l,Af42,A143,A1l,A12,Af3,A14 
(3.3) 

be the infinitesimal generators of the Poincare 
group where the M i are the infinitesimal left trans­
lations (usually called P;; cf. Ref. 5, p. 134). 

Suppose we had a (3.1). Then there would be 
generating functions 

(3.4) 

for the action of the infinitesimal group elements 
(3.3). 

These functions (3.4) are unique except for an 
additive constant of integration. However, in the 
circumstances of (3.1) they can be chosen to have 
the form (Ref. 5, proof of 6.2) 

(3.4') 

where jJ. is a left-invariant 1-form on G [N. B: the 
3.3 are right invariant]. As a result, under left 
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translation by a Lorentz transformation on G, 

the hl' h2' h3' h4 transform ~n the manner of 
the components of a vector, (3.4") 

the hi transform in the manner of the com-
ponenls of an alternating tensor, (3.4"') 

whence (Ref. 1, 46) 

Wi = €ij kl hJhkl transform in the manner of a 
vector. (3. 4"") 

Moreover, (3.4") and (3.4"") are invariant under 
translation so that (3.4") and (3.4"") hold for 
any left translation on G. Thus (as in the quantum 
case) the two {unctions 

h4h4 - hl hl - h2h2 - h3h3 = giihihj = hihj (3.5) 

and 
w 4w4 - w1 w 1 - w2 w2 - w3 w3 = gijwiW j = WjWi 

(3.6) 

are constant on K'= GIS. 

We say tb.at a vector (say 3.4") is T, S, L, or 0 
according to whether (3.5) is positive, negative, 
zero but that some hj is not 0 or, finally, all the hi 
are O. Thus a given ~3. 2) gives rise to a pair of 
such letters. For example, a TS particle has (3. 5) 
positi ve and (3. 6) negative. 

Theorem 3.1: A G-invariant, completely 
Hamiltonian elementary one-particle system is 
either TS, TO, ST, SS, SL, SO, LS, LL, or La. The 
TS particles form a family indexed by two con­
tinuous parameters ("mass" and "spin"). The 
number of parameters for each of the other fami­
lies is 1,2,2,1,1,1,1,0, in the order of Theorem 
3. 1. The dimension of the state space is eight for 
TS, ST, SS, SL, LS, and six for TO, SO, LL, La. Each 
TX particle can have any speed up to that of light. 
Each LX particle must have the speed of light. 
Each SX particle can have any speed exceeding 
that of light. Only LS and LL particles are not 
completely relativistic. 

In stating this theorem we have presumed to make 
no distinction between any two Hamiltonian-equiva­
lent systems,in the following sense. Let (K, b.,P), 
(1[, A,/i) be completely Hamiltonian systems,p and 
P being the Poisson brackets. Then a map T:K -7 K 
which makes Li"yx' T = .1.~ and P (f, h) = p(f 'T,h' T) 
is a Hamiltonian homomorphism, and, if T-l is 
also a Hamiltonian homomorphism, then T is a 
Hamiltonian equivalence. 

We have already remarked in Sec. 2 that for an 
invariant elementary system we can take K to be 
the coset space GIS, where S is a closed subgroup 
of G. We observed in Ref. 5, 3. 7, how the 2-form 
{3 defining the alternating structure on K gives rise 
to closed (left) invariant 2-form Q! on G, which is 
of the form dJ1., where J1. is a left-invariant 1-form 
(Ref. 5, 4. 4). 

We also observed that 

the singular vectors at the identity, for dJ1., 
are precisely the vectors tangent to S there. 

(3.7) 
We refer to this set of vectors as the Lie algebra 
of S. Another property of S is as follows: 

The Maurer-Cartan form J1. is invariant under 
right translation by elements of S. (3. 7') 

Proof: From the way in which dJ1. is obtained on 
G from a 2-form on the space of cosets TS, it 
follows rather obviously that dll is right invariant 
under S. Now we must prove that Il itself is thus 
invariant. Let J1. ' be a right translate of J1. by a 
member of S, and let 0 = Il' - J1.. Then do is cer­
tainly O. Hence O(Z) = 0 for every commutator Z 
in g. But the commutators span 9 (cf. Ref. 5,4.6), 
so that 0 = 0, and Il' = Il. (g is the Lie algebra of 
G.) 

We now follow a suggestion of Simms to simplify 
the argument in Ref. 2 by explicitly observing the 
fact mentioned in Theorem 3.2 below. This the­
orem is precisely the conclusion of the relevant 
special case of Kostant's theorem (Ref. 3, 5.4.1). 
However, Simms 6 has kindly also suggested the 
following argument which establishes Theorem 
3.2 on the basis of what we have done here up to 
this point. 

Sand [J1.] have the same Lie algebra. (3.7") 

The proof requires recalling the adjoint represen­
tation ad of G in g. For T in G, the transpose ad(T)* 
acts in g' and ad (T)*1l = J1. if and only if J1. is pre­
served by the action of T from the right. (For 
right-invariant Il, this right would be left.) 

Therefore, conSider an X in the Lie algebra of [p.]. 
Then exp(tX) E ff.L] and ad(exp(tX»* (Il) = Il and so 
(see Ref. 7, p. 118) exp(adtX)* Il = Il for all t. Thus 
(adX)* Il = 0 and (adX*)(Il) (Y) = 0 for all Y. There­
fore 1l«(X, y]) = 0 or dJ1.(X, y) = 0 for all Y. Using 
(3.7), we obtain (3.7"), and from this we obtain 
the result. 

Theorem 3.2 (c/. Ref. 5, Theorem 5.4.1): GiS 
is a covering space of the orbit of Il in g'. 

Here g' is the dual linear space of 9 and the 
"orbit" of J1. is the set of images of J1. under the 
action 1l-7 ad( T- 1 )*(J1.) in gf. Now S is, by (3.7") 
and (3. 7'), an open subgroup of [Il] whence we 
have the map from G/S to GI[J1.] whence to the 
orbit Gil as asserted in Theorem 3.2. 

One application of (3.7") is that it enables one to 
assert that, for every Il in gf, the orbit of J1. is a 
completely Hamiltonian system. To see this, one 
simply selects S = [Il] and forms K = G/ S. As is 
well known, this is equivalent to the orbit. We 
must discover what the generating functions (3.4) 
are in this situation. To express the facts we must 
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observe that an element X of a linear space 9 de­
fines a (linear) function on 9' for which we use the 
same letter X. 

Theorem 3.3: In the completely Hamiltonian 
system formed by the orbit of an arbitrary ele­
ment J.l of g', the generating fWlction for an infini­
tesimal Poincare transformation X is precisely 
X itself regarded as a function on 9'. 

Proof: In Ref. 5, 5.3, the generating function 
was calculated as a function on the group G. We 
get from G to the orbit G(J.l) by sending T into 
ad( T-1 )*(J.l). Application of 5.3 of Ref. 5 to J.l = 
Ai J.li and X = ~jXj (in the notation there used) 
tells us that the generating fWlction for X on G is 
transformed precisely onto the function that X 
defines on g' . 

4. A CRITERION FOR ONE-PARTICLE SYSTEMS 

Theorem 4.1: Let (K, ~) be a G-invariant, 
completely Hamiltonian system. Then it is a one­
particle system if and only if the generating fWlc­
tions for translations (3.4") are not all zero [see 
(3.1)]. 

Proof: If all four hi are zero at some point, they 
are zero identically [(3-4")]. Hence every point of 
K is invariant Wlder all translations. Then (2.3) 
applies and shows that there is no r . 
On the other hand, if they are never all zero, then 
the equations 

do define a line, which we will call r(k). Here the 
x i are not the Cartesian coordinates Xi of 1R4 but 
rather Xi = gj xi where the gii are defined en 
passant in (3.)6). 

Now perform an infinitesimal translation Ea lax k. 

The perturbed form of (4.1) is then 

(4.2) 

becauseB {hk , h4 i} = - gki h4• Suppose the point 
(a1 , ••• , a4 ) lies on r(k). The perturbed point has 
the contravariant coordinates a i + EO ~ and the co­
variant coordinates a i + Egik • These satisfy (4.2) 
if the a i satisfy (4.1). Thus r commutes with 
translations. 

We now consider rotations Mjk• Under such a map, 
the point with covariant coordinates ai goes to Ai 

= ai + E(ajgki - ak~i). The form of Eqs. (4. 1) 
changes to 

h4x i - [hi + E(gikhi - gij hk )]x4 

"" - [h4i + E(~ihk4 -gki hi4)]. 

We put A\., ... ,A4 into this equation, noting that 
only j, k <. 4 need be considered [see (2.2) again]. 
Thus A4 = a4, and the resulting equations are 

satisfied if the a i satisfy (4.1). Thus r commutes 
With the rotations in the group E. Finally inspec­
tion shows that r commutes with space (and time) 
inversions. This establishes Theorem 4. 1. 

This mode of assigning lines in IR 4 to states of the 
system is generally not the only one possible. In 
fact, in some systems there is a more symmetric, 
in the space-time sense,formula possible. Let the 
value of (3.5) be denoted by nz 2 • When m 2 '" 0, de­
fine the fWlctions Hi by Hi m 2 = hi for i = 1,2,3,4. 

Theorem 4.2: Let (K, ~) be as in Theorem 4.1 
but assume also that m 2 i- O. Then this is a com­
pletely relativistic one-particle system. 

Proof: The parametriC equations Xi = shi(k)­
hij(k)H j(k), i = 1,2,3,4 and - 00 < s < 00, define a 
line r(k) for each state k. According to definition 
of "completely relativistic" we should show that 
r commutes with the action of the translations 
and also the entire Lorentz group. The method 
used in proving Theorem 4.1 does indeed work 
here too. However, the calculations are not very 
interesting and, since they are rather long, will be 
omitted. 

It is a fact [proved in (4.9") below] that for some 
one-particle systems, namely LS and LL ,a com­
pletely relativistic world-line assignment is not 
possible. (To see this, we must continue our in­
vestigations until we find the corresponding sub­
group S of G for which K = GIS.) 

Since we have thus drawn attention to the non­
uniqueness of the definition of r(k), it seems appro­
priate to give a simple proposition showing just 
where the arbitrariness can, and cannot, lie. 

Assume the hypotheses of Theorem 4. 1. When 
the hi are not all 0, then r(k) has to be a 
(straight) line and has to be parallel to (4.1). 

(4.3) 
The reason is as follows. We know {giihihj,f} = 0 
for allf [see (3.5)]. From this we see thatgijh i 
{hj,f} = 0 and hence that {gijhi(k)h.,f} is 0 at 
the point k of K. Thus k is unmoved' by gijhi(k)Mi 
which generates a nonzero translation having the 
directions of the line (4.1). Thus r(k) has to be 
invariant Wlder such a translation. 

We now return to the problem raised at the end of 
Sec. 3, namely to say which of the systems based 
on orbits in 9' give one-particle systems. To 
answer this [in (4.7), below], we need a little more 
notation. We have already selected as a basis for 
9 the vector fields (3.3) which are right invariant. 

Now g' is the dual linear space of g, but we will 
identify it with the left-invariant 1-forms on G. We 
take the left invariant rather than right invariant 
because the forms mentioned above, just before 
(3.7), are in fact left invariant [as they should be, 
because (3. 3) are infinitesimal left multiplications. 

Accordingly we choose as our basis for g'the 
system 
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JJ.2 3, /131, JJ.12, /141 , JJ.42, JJ.43 , JJ.l, /12 , JJ.3, /14 (4. 4) ly) invariant. This will support the assertions 
about dimensions in Theorem 3.1: 

such that the pairing of the ith element in (4.4) 
with the jth element of (3.3) gives l5 i · at the iden­
tity in C. By JJ.ij not appearing in (4. ~) we mean 
-JJ.ji 

For the element 

(4.5) 

we define M ij(JJ.) = A ij and M k(JJ.) = A k' As already 
remarked in Sec. 3, tnese functions 

(4.5') 

are the generating functions for the Similarly 
named infinitesimal actions (3.3). Thus we obtain 
the following result: 

The system associated with the orbit of (4.5) 
is a one-particle system if and only if the 
components Ai> •.• , A4 are not all O. It is 
completely relativistic if (A4)2 =f (A1 )2 
+ (A3)2. (4.6) 

Corollary 4.1: Systems (3.1) of the nine types 
listed in Theorem 3.1 and with the properties 
listed in Theorem 3. 1 do exist. 

To prove (4.6), we list nine Maurer-Cartan forms, 
expressed in the basis (4.4), where except in 
(4. 7h) the coefficients are arbitrary real positive 
parameters. The two-letter symbols describe, in 
the notation of Theorem 3.1, the type of system 
which the orbit in 9' provides: 

(TS) ± aJl4 + bJJ.12, (4.7a) 

(TO) a/14, (4.7b) 

(ST) ± aJJ.3 + b/112, (4.7c) 

(SS) aJJ.l + bJJ.43, (4.7d) 

(SL) aJJ.3 ± 1J.12 - 1J.41, (4.7e) 

(SO) aJJ.3, (4.7f) 

(L8) 1J.3 ± JJ.4 + a1J.42, (4.7g) 

(LL) 1J.3 ± JJ.4 + all12 (where a> 0 or a < 0), 
(4.7h) 

(LO) J-L3 ± J-L4 (4. 7i) 

Now these coefficients are the generating functions 
at one point of the orbit, namely (4.5) itself. Hence, 
for example, (4. 7a) has m 2 [Le., the value of (3.5)] 
equal to a2 , so that the T is justified. We leave it 
to the reader to calculate (3.4"") and (3.6) in each 
case, and verify the propriety of each deSignation. 

It is not relevant to the existence, but any (4.5), 
when the Ai are not all 0, lies in the orbit of one of 
(4. 7a)-(4. 7i) and, of course, in only one. 

We now list bases for the Lie algebras of the sub­
groups of G which leave (4. 7a)-(4. 7i) (respective-

(TS) M4,MI2 , (4.8a) 

(TO) M4,MI2,M23,M31' (4.8b) 

(ST) M 3,MI2 , (4.8c) 

(SS) M1,M43 , (4.8d) 

(SL) M3,M12 ±M41> (4.8e) 

(SO) M3,MI2,M41,M42' (4.8f) 

(LS) M3 'F M 4, M 23 'F M42 + 2aM4, (4.8g) 

(LL) M3 'F M4, M12 , M 23 ± M42 - 2aM1, 

M31 'F M41 - 2aM2, (4.8h) 

(LO) M3 'F M4, M12 , M23 ± M 42 , M31 'F M41 • 
(4.8i) 

These can be obtained by the method of undeter­
mined coefficients combined with these formula 
concerning 9 and 9': 

(ad M i)* (p.J) = gik Ilkj , 

(ad M ;)* (p.Jk) = 0, 

(adM;;>*(llk) = (15fgjm -I5Jgjm)llm, (4.9) 

(adMij)*(llrs ) = 15fllksgkj - 15fllkrgkj 

+ 15'/lkrg . _ 15"("ksock. 
JI" kz JI" ""t' 

which themselves follow from the elementary 
general fact that (adX ;)*(p.J) = c{kilk• 

Actually, we can assert more than is needed at 
this point. 

The group [IJ.] is generated by the Lie algebra 
given for the relevant case in (4.8). (4.9') 

The reason for this is that in each case the group 
[Il] is connected. The way to see this is to verify first 
that the subgroup So of the proper orthochronous 
Lorentz group which leaves fixed the pair of 
vectors (3.4") and (3.4"), is connected. (This re­
quires some calculation for the last three.) Then 
we note that translations move an element IJ. of 9' 
all over the "fiber above" the corresponding pair 
of (3.4"), (3.4'") values for that Il. The fiber is 
1R3. Thus, if a is in [JJ.], then a = TA, where A E So 
and T is a translation. We deform A to 1 in So and 
deform T so that TtA t remains in [Il], showing the 
connectedness of the latter. 

Finally, we are obliged to show that there is no 
C-invariant map of GJJ. into the lines in R4, in 
cases (4. 7g), (4. 7h). This is a consequence of the 
following, which is easily proved. 

Let i = 1,2,3, or 4. There is no curve in 1R4 

which is invariant under the group generated 
by M3 + M4 and M23 + M24 + aMi unless 
a = O. (4.9") 

The case LO is completely relativistic, although 
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m 2 = 0, because the group (4. 8i) is precisely the 
group leaving a certain line invariant. 

5. THE ENUMERATION OF ELEMENTARY 
PARTICLE SYSTEMS 

Theorem 5.1: Every [(3.1)] G-invariant, com­
pletely Hamiltonian one-particle system is of the 
form (4.6) with state space being an orbit of some 
element of g. 

Proof: We have already mentioned [see (3.7)] 
how such a system gives rise to an element Il of g'. 
The problem is now just this: If Il is as in (4.5) 
and the Ai are not all 0, can one find a 0 in G such 
that (Ad o)*(Il) is in the list (4. 7a)-(4. 7i)? This is 
in fact true, and we sketch the proof. To begin 
with, we evaluate P(Il) and W(Il), the vectors (3.4") 
and (3.4"'), and determine whether we have TS, 
TO, ... , LO. We then perform a Lorentz trans­
formation, which reduces P and W to "normal 
form." We list these, for the nine cases, giving the 
contravariant components: 

0,0,0, ± a; 0, 0, ± ab, 0, (5. la) 

0,0,0, ± a; 0, 0,0,0, (5.1b) 

O,O,± ab,O;O,O,O,± a, (5.1c) 

a, 0, 0, 0; 0, b, 0, a, (5. 1d) 

0,0, - a, 0; 0, a, 0, ± a, (5. Ie) 

0,0,- a, 0; 0, 0, 0, 0, (5.1£) 

0,0,- 1, ± 1; a, 0, 0, 0, (5.1g) 

0,0,-1; 0, 0,- a, ± a, (5. Ih) 

0,0,-1, ± 1; 0, 0, 0, 0. (5. li) 

The knowledge of these components now fixes the 
coordinates Ai and Aij of the Maurer-Cartan forms 
except for three. [These three degrees of freedom 
correspond to the fact that the fibers mentioned 
just below (4. 9') are like IR3.] These three are in 
each case the ones that can be adjusted by trans­
lations (4.9). We assure the reader that (4. 7a)-
(4. 7i) can be achieved. 

The proof of (5.1) is completed by the final ob­
servation that S is in fact [Il] [see (3.7'), (3. 7"), 
and (4.9')]. Thus the specimens produced for 
proving (4.7) happen to give a complete list of all 
possible G-systems [(3.1)]. 

This result can be reformulated in an interesting 
way. We have already noted that g' is a complete­
ly Hamiltonian system (Ref. 4,5.1). By a sub­
system (K', .6.') of a given system (K,.6.) we natural­
ly mean that K' c K and .6.' is the restriction of .6. 
to K'. A completely Hamiltonian subsystem (K', .6.') 
is one that is completely Hamiltonian, say with 
Poisson bracket {, }' such that if f and g are 
functions on K while f', g' are the restrictions to 
K', then {f',g'}' is the restriction of {f,g} to K'. 
In this sense, an open invariant submanifold of a 
completely Hamiltonian system is a completely 

Hamiltonian subsystem. In particular, 

The part m of g' where (M1)2 + (M2)2 + (M3)2 
+ (M4)2 is not zero is a completely Hamil-
tonian subsystem of g'. (5.2) 

In fact, the uniform method 4.11 of defining r(k) 
enables us to say that 

m is an invariant one-particle system. (5.2') 

What it lacks is the property of "elementary." Now 
any invariant subset defines a subsystem, so that 
every invariant system decomposes into element­
ary systems. However, it is not clear that if the 
big system is completely Hamiltonian, then the 
subsystem is a completely Hamiltonian subsystem. 
But this is true for m. This is essentially what we 
have proved about G-systems. 

Theorem 5.2: Every (3.1) is a completely 
Hamiltonian subsystem of the subsystem m of the 
dual g' of the Lie algebra of the Poincare group. 

We return now to (5.1) with the intention of de­
scribing the most general 

Poincare invariant, completely Hamiltonian 
elementary one-particle system. (5.3) 

Suppose K were the state space of a (5.3). Since 
G is a subgroup of <P, we obtain an action of Gin 
K, but, of course, G need not act transitively. 
However, since <PIG has only four elements, Kwill 
either be one, or two, or four open and closed sub­
sets each of which is a single orbi! under G. 

Let us call these 

the G-constituents of the system (5.2). (5.4) 

Each G-constituent will be of one of the types 
(4. 7a)-(4. 7i). However, 

if one G-constituent has a particular type, then 
the others have that same type. (5.5) 

The reason for this is as follows. Let K1 and K2 
be two constituents of K. We can pick k1 in K1 and 
k2 in K2 such that the subgroup S1 (or S2) of those 
elements of G that leave k1 (or k2' respecU-vely) 
fixed is in the list (7. 8a)-(4. 8i). Now select 0 in 
<P such that o(k1 ) = k2 • Then S1 = 0-1S20• Ref­
erence to (4. 8a)-(4. 8i) shows that we must have 
S1 = S2' and so the G constituents have the same 
type. Of course, this does not mean that the para­
meter or parameters in the Maurer-Cartan form 
are necessarily (except in cases LS and LL) the 
same for K1 and K2. Thus 

the functions (3.5) and (3.6) are constant on 
each Ki but these constants may vary with i. 
However, the sign is constant on K, and if 3.43 
is zero anywhere, it is 0 everywhere. Thus 
the (5.2) can be partially described by one of 
the nine symbols TS-LO. (5.6) 
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Thus a particle of type TS may have one, two, or 
four different masses, but two observers related 
by proper orthochronous Poincare transformations 
will invariably see the same mass. 
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follows. We examine the proof of 6.2 in Ref. 5 wherein vector 
fields Yi have generating functions hi' One sees there that Y rn h k 
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The physical information contained in the first 2n moments of the single-particle spectral weight function 
of a fermionic many-body system is investigated. The approach is based on the mathematical theory of 
the classical moment problem. Under consideration are the thermal as well as dynamical properties of 
the system. Using this information, approximate n-pole single-particle thermal Green's functions and the 
corresponding spectral weight functions are constructed. It is shown that these approximations are not 
unique and depend on a real parameter. This dependence is used for the calculation of the rigorous error 
bounds of the approximate thermal averages. 

1. INTRODUCTION 

A time-dependent physical process is fully des­
cribed by its spectral weight function (or spectral 
denSity, using a somewhat different terminology). 
Therefore, any possible information about this 
function is helpful in the understanding of the be­
havior of the physical system. An important 
source of such information are the moments of the 
spectral weight function (SWF). Moments of the 
SWF have been calculated for different systems in 
various areas of research as, for example, for the 
study of the NMR spectrum, 1 for neutron scatter­
ing,2 for Raman light scattering,3 for absorption 
of radiation,4 etc. The advantage of these calcula­
tions dwells in the direct correspondence of their 
results to experimentally measurable quantities. 

Suppose that a finite number of lowest-order SWF 
moments of a given system are known. It seems 
natural to inquire as to what information about the 
system can be derived from this knowledge. Con­
sequently, since this information is, obviously, in­
complete, a question arises concerning the error 
bounds of the approximate results. This question 
constitutes the object of the present paper. 

We study here the physical information about a 
many-body system which might be obtained from 
a given number of lowest-order moments of its 
Single-particle SWF. This concerns the dynami­
cal properties of the system (states and energy 

spectrum) as well as statistical mechanics (ther­
mal averages). Our approach is based on the 
theory of the classical (Hamburger) moment 
problem. This approach furnishes a method of 
establishing the rigorous upper and lower error 
bounds of the thermal averages in a given approxi­
mation. 

The problem we are concerned with has been par­
tially discussed by several authors. Harris and 
Lange 5 devised a moment technique for the study 
of Single-particle excitations in metals with nar­
row energy bands. A method for the calculation 
of error bounds of high-temperature expansions 
in statistical mechanics has been given by Gor­
don,6 who was first to apply the theoretical 
foundations of the moment problem to practical 
calculations. In Gordon's work use was made of 
the mathematical results of the theory of con­
tinued fractions, which is closely related to the 
classical moment problem. His calculation of the 
error bounds for the linear response of a system 
to a pulsed perturbation follows the same out­
lines. 7 These methods were applied by Wheeler 
and Gordon8 for the calculation of the rigorous 
error bounds for the thermodynamical properties 
of harmonic solids. 

Spectral weight functions of a variety of physical 
systems have one basiC property in common: They 
are positive definite. We are referring to such 
systems in the present work. To be specific, we 



                                                                                                                                    

2422 RIC HARD ARE NS 

Thus a particle of type TS may have one, two, or 
four different masses, but two observers related 
by proper orthochronous Poincare transformations 
will invariably see the same mass. 

1 V. Bargmann and E. P. Wigner, Proc. Natl.Acad. Sci.(U.S.) 34, 
211 (1948). 

2 R. Arens, Commun. Math. Phys. 21, 139 (1971). 
3 B. Kostant, Quantization and Unitary Representations, Lecture 

Notes in Mathematics 170 (Springer, New York, 1970), pp.87-208. 
R. Arens, Trans. Am. Math. Soc. 147, 153 (1970). 
R.Arens, Commun. Math. Phys. 21, 125 (1971). 

6 D. J. Simms, Lie Groups and Quantum Mechanics IV. Lecture 
Notes in Mathematics 52 (Springer, New York, 1968). 

7 S. Helgason, Differential Geometry and Geometry SPaces (Aca­
demic, New York,1962). 

ACKNOWLEDGMENTS 

This research was partially supported by the NSF 
Grant No. GP-18127. I wish to express my thanks 
to Professor J. D. Simms and Professor Robert 
Hermann for several valuable comments. 

8 In greater detail, we assert that when the functions (3.4) are 
chosen in the manner of (3.4'), then their Poisson brackets are 
related in the same way as the Lie brackets of the corresponding 
infinitesimal transformations (3.3). This assertion is proved as 
follows. We examine the proof of 6.2 in Ref. 5 wherein vector 
fields Yi have generating functions hi' One sees there that Y rn h k 

= c~m hi' A little manipulation of 2.4 and 2.41 of Ref. 5 shows 
that (in the ,"egular case at hand) {hm,j} = Y mf . Thus {h m, h k} = 
c~ khi' On the other hand, [Y m' Yk 1 = - C~"k Yi . This proves our 
assertion. 

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 12,NUMBER 12 DECEMBER 1971 

The Classical Moment Problem and the Calculation of Thermal Averages 
A. Lonke 

Department of Physics. University of the Negev, Beer-Sheva. Israel 
(Received 22 March 1971) 

The physical information contained in the first 2n moments of the single-particle spectral weight function 
of a fermionic many-body system is investigated. The approach is based on the mathematical theory of 
the classical moment problem. Under consideration are the thermal as well as dynamical properties of 
the system. Using this information, approximate n-pole single-particle thermal Green's functions and the 
corresponding spectral weight functions are constructed. It is shown that these approximations are not 
unique and depend on a real parameter. This dependence is used for the calculation of the rigorous error 
bounds of the approximate thermal averages. 

1. INTRODUCTION 

A time-dependent physical process is fully des­
cribed by its spectral weight function (or spectral 
denSity, using a somewhat different terminology). 
Therefore, any possible information about this 
function is helpful in the understanding of the be­
havior of the physical system. An important 
source of such information are the moments of the 
spectral weight function (SWF). Moments of the 
SWF have been calculated for different systems in 
various areas of research as, for example, for the 
study of the NMR spectrum, 1 for neutron scatter­
ing,2 for Raman light scattering,3 for absorption 
of radiation,4 etc. The advantage of these calcula­
tions dwells in the direct correspondence of their 
results to experimentally measurable quantities. 

Suppose that a finite number of lowest-order SWF 
moments of a given system are known. It seems 
natural to inquire as to what information about the 
system can be derived from this knowledge. Con­
sequently, since this information is, obviously, in­
complete, a question arises concerning the error 
bounds of the approximate results. This question 
constitutes the object of the present paper. 

We study here the physical information about a 
many-body system which might be obtained from 
a given number of lowest-order moments of its 
Single-particle SWF. This concerns the dynami­
cal properties of the system (states and energy 

spectrum) as well as statistical mechanics (ther­
mal averages). Our approach is based on the 
theory of the classical (Hamburger) moment 
problem. This approach furnishes a method of 
establishing the rigorous upper and lower error 
bounds of the thermal averages in a given approxi­
mation. 

The problem we are concerned with has been par­
tially discussed by several authors. Harris and 
Lange 5 devised a moment technique for the study 
of Single-particle excitations in metals with nar­
row energy bands. A method for the calculation 
of error bounds of high-temperature expansions 
in statistical mechanics has been given by Gor­
don,6 who was first to apply the theoretical 
foundations of the moment problem to practical 
calculations. In Gordon's work use was made of 
the mathematical results of the theory of con­
tinued fractions, which is closely related to the 
classical moment problem. His calculation of the 
error bounds for the linear response of a system 
to a pulsed perturbation follows the same out­
lines. 7 These methods were applied by Wheeler 
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consider a system of fermions enclosed in a vol­
ume V, the dynamics of which is given by the Ham­
iltonian JC == JC(ct, c/J)' The creation and annihil­
ation operators ct and c v satisfy the usual Fermi­
Dirac anticommutation relations. The index II may 
refer to a set of localized lattice sites (Wannier 
representation) or represent quantized moments, 
energy band indices, spin quantum numbers, etc. 

The measurable statistical properties of the sys­
tem can be conveniently described by means of the 
double-time Green's function formalism. Follow­
ing Zubarev 9 , we define for the system in thermo­
dynamical equilibrium the retarded 

and the advanced 

Gta)(t - t') == iB(t' - t)(kv(t),ct(t')]+> (1. 1b) 

Single-particle Green's functions. Here [ ... J+ 
stands for the anticommutator, and the average is 
taken by means of the grand canonical ensemble 

( ... ) = Tr{eB(o- +)IN) • •• }, (1. 2) 

where Q and J.I. are, respectively, the thermodynami­
cal and chemical potentials and N is the number 
operator. The second quantization operators in 
(1. 1a) and (LIb) are taken in the Heisenberg 
representation 

c~+)(t) = eiHtc~+)e-iHt, 
with 

H=JC-/JN. 

Finally, 8(/) is the usual step function 

B(t) = .I 1 for I> 0, 
10 for t < O. 

(1. 3) 

(1. 4) 

(1. 5) 

It is well known that the Fourier transform of the 
retarded or advanced Green's function 

(1. 6) 

can be analytically continued into the complex 
energy plane E. As a result, we get an analytical 
function 

G (E) == I G£1")(E) for ImE > 0, 
v I G~a)(E) for ImE < 0, 

(1. 7) 

consisting of two branches and defined in the whole 
complex E plane with a cut along the real axis. 
This function yields the spectral (Lehmann) repre­
sentation 

) _ Joo dw Av(w} 
G)E - 2 E ' -00 1T - W 

ImE;o< 0, (1. 8) 

with the SWF 

(E ~ 0 and w real) 
or 

(1. 9) 

(1. 10) 

in the time scale. (1. 10) is usually referred to as 
the characteristic function. 

In the following section we study in general terms 
the moments of the SWF, (1. 9). We show that the 
determination of this function from a given 
sequence of moments represents a classical mo­
ment problem. In Sec. 3 we review some of the 
known mathematical results from the theory of the 
moment problem. These results are used for a 
geometrical interpretation of the thermal Green's 
function G /J (E), (1. 8). A detailed s1udy of this geo­
metrical picture of G,,(E) on the complex G plane 
is given in Sec. 4. USing the information contained 
by a given number of SWF moments, we construct 
successive approximations to the SWF and Gv(E) 
and give a geometrical interpretation of them. 
From this geometrical picture, general bounds on 
the function Gv(E) may be established. The pecu­
liar property of these approximations is their de­
pendence on a real parameter. This implies that 
our procedure enables one to derive a continuum 
of functions, all of them equivalent in the frame­
work of the given approximation. 

Section 5 is devoted to the study of the dynamical 
aspects of our approximation scheme. We show 
that the consideration of physical systems leads to 
a restriction of the general mathematical problem 
by cases yielding unique solutions. ConSidering 
the dynamical information available from a finite 
number of lowest-order SWF moments, we intro­
duce in this section a Hilbert space, the metrics of 
which is temperature dependent. In Sec. 6 the pro­
blem of the calculation of thermal averages is dis­
cussed. It is shown that the mentioned dependence 
of the approximate SWF on the numerical value of 
a real parameter enables one to establish the rig­
orous bounds of the error due to the incomplete­
ness of the used physical information. A simple 
example is given in Sec. 7, where we discuss the 
problem of impurity scattering in metals. We 
close the paper by an appendix where it is shown 
that the Pade apprOximant of the thermal Green's 
function is a particular case of our approximation 
scheme. 

2. THE MOMENTS OF THE SWF 

In this section we will be concerned mainly with 
the general properties of the SWF defined by (1. 9). 
Introducing a complete set of orthonormal eigen­
functions of the Hamiltonian (1.4), Hln> == En1n), 
the SWF-the Fourier transform of the character­
istic function (1. lOr-is given by 

Av(w) == 21Tj-l(w) 6 (nlc;lm>(mlc)n) 
m.n 
X eIl(Q-E~t5(w + Em - En), (2.1) 

where few) stands for the Fermi function 

(2.2) 
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Thus, Av (w) is a real positive-definite function 
satisfying the normalization condition (the zeroth 
moment) 

JOO dw 
s(v) =:: - A (w) =:: 1. o -00 21T IJ 

(2.3) 

Our posterior derivations, on the whole, are based 
on this small piece of information, namely, the 
positiveness of Au (w). Being absolutely general, it 
is found to be of great importance since it enables 
one to base the calculation of thermal Green's 
functions on the mathematical foundations of the 
classical moment problem. 

Making use of the equation of motion of an opera­
tor in the Heisenberg representation, one easily 
derives the well-known formal expression for the 
nth moment of the SWF: 

where the operator L is given by 

Lcv = [cv,H]_. 

(2.4) 

(2.5) 

The evaluation of the equal-time commutators in­
volved in (2.4) is trivial (at least in principle). 
The result furnishes for s~v) an expression which 
is homogeneous (of order n) in the energy para­
meters of the particular system and which may in­
volve thermal averages. In general, considering 
systems with binary interactions, these will be 
equal-time n-particle correlations. Thus, the 
sequence of Eqs. (2.4) represents a moment prob­
lem, the solution of which yields the SWF expres­
sed in terms of given energy parameters and cer­
tain thermal averages. The latter, obviously, would 
have to be evaluated in a self-consistent manner. 

Unfortunately, in practice this task can rarely be 
accomplished by a straightforward approach. It is 
pOSSible, as it was proposed in a recent paper, 10 
to take into account effectively the correlations up 
to the nth order by solving the first n-moment 
equations. To this end, it is sufficient to seek the 
approximate SWF in the linear manifold of n I) 

functions. For example, if n is even, then substitut­
ing 

n/2 
A (w) = 1. "6 [(1 - a(1I»6(w + y~v» 

II n i= 1 t t 

being unique. In other words, the same degree of 
approximation may be achieved by many other 
functions (in fact, a continuum) belonging to the 
same class. Moreover, among the functions of the 
same class, Le., consisting of a weighted sum of 
n I) functions, there exist such that satisfy the se­
quence (2.4) up to the (2n - 2)th moment equation, 
and under certain conditions even up to the order 
2n - 1. Therefore, the fact that a self-consistent 
solution of the type (2. 6), which was found in the 
described way, happens to satisfy the (n + 1 )th mo­
ment equation also, cannot be considered as a 
proof that the solution is exact and has to be taken 
cum grano salis. 

Let us turn to the discussion of the general pro­
perties inherent in the moment problem (2.4). We 
start with the observation that the SWF may al­
ways be written in the form 

00 

Av(w) == 21T 6 t.!fu)l)(w - ~(u», 
i=1 t 

(2.7) 

where the coefficients /-L~u) ~ 0 and satisfy the nor-
t 

malization condition 

(2.8) 

From a pure mathematical point of view the repre­
sentation of the SWF as an infinite weighted sum of 
Ii functions follows from the fact that it has to 
satisfy a countable system of Eqs. (2.4). Indeed, 
we have seen that for any finite n the SWF may be 
chosen ~rom the class of n-pole functions. Physi­
cally, (2.7) reflects the countability of the energy 
spectrum of a system enclosed in a finite volume. 
Finally, the nonnegativeness of the coefficients /-L~u) 
is obvious since Au(w) is a positive-definite func:' 
tion. 

With (2. 7) the moments of the SWF yield 
00 

s<~) :::: L) /-L~v)(~~v» n, 11 :::: 0, 1, 2, ..• . (2. 9) 
;=1' , 

At this stage we would like to distinguish between 
the following two cases: (a) when the exact SWF of 
the particular problem under consideration be­
longs to a finite n-dimensional linear manifold of 
I) functions and (b) when this dimension is infinite. 
In the first case, only a finite number n of the co­
efficients /-L(Y) in (2.9) are nonzero. This is the 
case of an-pole SWF. In the second, there exists 
an infinite sequence of /l(l') > O. Such a function 
will be referred to as a continuous SWF. 

+ (1 + a~V»o(w - y}v»] (2.6) We consider now the sequence of the determinants 

into the first n equations of the sequence (2.4), one 
derives the same number of algebraic relations 
for the parameters aiv), ••• , a~i1, yf"), ; ., ,y~~~. 
The thermal averages involved in these relations 
can be established self-conSistently afterward by 
the consideration of higher-order SWF.10 

This procedure, actually, implies the approxima­
tion of the Green function by a n-pole one. We will 
show, however, that this kind of solution is far from 

51 ..• Sk 

52 •• , Sk+1 

k = 0,1,2, ... , 

(2. 10) 
where for brevity we have neglected writing the 
quantum indices (II). These determinants have the 
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following property: In the case of an-pole SWF 

Dil > 0 for k::;:j 0, 1, 2, ... , n - 1, (2.11a) 

Dk == 0 for k;. n. (2.11b) 

The validity of this statement can be easily proven. 
To this end we observe, first, that for the case 
under consideration we may write 

where d~il'i2' .... i n) stands for Vandermonde's 
determinant 

1 1 1 

A. 
'1 Ai2 A. 

'n 

d~i1·j2··" ,in) == 
A? 

'1 
;\? A? 

'2 'n 

(2. 12) 

== n (A. -X.). (2.13) 
n.;:.r>s~l lr 1. s 

Therefore, from the positiveness of the coeffici­
ents Ilj it follows that D n -1 > O. Hence, since all 
the Dk for k == 0, 1, .•• ,n - 2 are principal 
minors of a positive-definite determinant, they 
also have to be positive. This proves (2. lla). 
Finally, writing 

n 

Dk == ~ JJ.i JJ.i •• , Hi Ai 
i

1
,i

2 
.... ,ik+

1
=1 1 2 k+l 2 

X A? ••• A~ d(i 1.i2'", ,ik+1J 
'3 'h'l k+1 ' 

(2.14) 

we note that for k > n the determinants 
dk\i11 , i2• •••• ik+ 1) contain at least two identical 
columns, whence immediately follows (2.11b). 
This concludes the proof. 

It becomes obvious now that the determinants 
(2.10) are all positive when a continuous SWF is 
considered. Thus, the moments of a continuous 
SWF, {sJO', form a positive sequence. l1 

The problem (2.4) of the determination of a posi­
tive-definite function A(w) from a given sequence 
is n}~ is known as the classical moment problem. 
The positiveness of {sJ~, is a necessary and suf­
ficient condition for the existence of a solution in 
the class of functions representing a continuous 
SWF.12 Therefore, the fact that in this case all the 
determinants (2. 10) are positive is an immediate 
result following from the assumption that the 
solution (2.4) does exist. This is plausible for 
physical reasons, taking into account the way in 
which our problem was posed. Thus, the proof 
presented above would appear to be irrelevant if 
only continuous SWF are considered. However, 
considering a given Hamiltonian the class of func­
tions to which the SWF belongs is not known a 
priori. And then the relations (2.11) become im-

portant as a testing criterion. Suppose that for a 
particular physical model we have found that D n == 
0, whereas all Dk with k < n are nonzero. This'is 
sufficient to claim that the number of poles of the 
exact Green function is n. 

3. THE GENERAL FORMALISM 

The classical moment problem has been investiga­
ted in great detail. In this section we briefly re­
view some of the well-known results. However, 
being interested mainly in the physical aspects of 
the theory, we will avoid reproducing lengthy 
proofs and mathematical derivations. For more 
detailed information concerning this subject the 
interested reader is referred to Refs. 12-14. 

We start with the definition of a linear functional ~ 
which is based on the sequence {sn}~ and the do­
main of which is the space of all polynomials 
{R(E)1. To this end we relate the number 

~R(E)}==PosO+P1s1+"'+Pnsn (3.1) 

to a given polynomial 

(3.2) 

It can be shown that the positiveness of the 
sequence {sn}~ is a necessary and sufficient condi­
tion for the functional ~ to be positive. This im­
plies that from R(u) ;. 0 {- 00 < u < oo} and R{u} ~ 
o follows ip(R) > 0.15 

In this section we consider the case of a continu­
ous SWF exclusively. The appropriate generaliza­
tions for the n-pole case will bi made below. 
Given a positive sequence {sn}O" it is possible to 
construct a sequence of polynomials Po (E), PI (E), 
... ,having the following properties: 

(a) P n (E) is of order n and its highest coefficient 
is positive. 

(b) The polynomials are orthonormal with regard 
to the sequence {sn}~' meaning by this 

(3.3) 

These polynomials, as can easily be checked, are 
given by 

So s1 ... sn 

sl S2'" sn+1 

Sn-l sn'" s2n-l 
1 E·,' En 

n == 0, 1, 2, ... , (3.4) 

where D-1 == 1 by assumption. 

The polynomials (3.4) represent one of the two 
linearly independent solutions of the finite differ­
ence equation 

k == 1,2, .. , , 
(3.5) 
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where 
ak == <fl{uPk(u)Pk(u)}, 

This solution is due to the initial conditions 

One may derive the second solution of Eq. (3. 5) 
which is a sequence of polynomials {Qn(E)};;" by 
assuming the initial conditions 

(3.8) 

The polynomials Qn(E), being of order n - 1, have 
the following representation: 

\Pn(E) - Pn(u)f 
Qn(E) == <flul E - U \" 

, / 

(3.9) 

n = 1,2, ... , 
(3. 10) 

where T is a parameter. It is easy to see that 
P n (E, 7) satisfies the orthogonality conditions 

for k == 0, 1, ... ,n - 2. 
(3. 11) 

The polynomials which have been introduced above 
possess a number of peculiar properties. We men­
tion here just these which are important to our 
present discussion: 

(a) All the zeros of a real quasiorthogonal poly­
nomial are real and simple. 

(b) The zeros of the orthogonal polynomials P n (E) 
and P n-l (E) interlace. 

(c) The zeros of the polynomial Q n (E) are real 
and simple and interlace with the zeros of 
Pn(E). 

Qn(E) are usually referred to as the polynomials of 
of the second kind, whereas P n (E), as polynomials Of particular interest to us will be the function 
of the first kind. 

(3. 12) 
Finally, it is convenient to introduce the quasi­
orthogonal polynomials of order n,Pn(E, T), which 
are given by 

where the variable E is complex, T is real (- 00 < 
T < 00), and analogously with (3. 10) 

ImG 

____________________ ~~~ __ ~~----------------------~ReG 

FIG. 1. An example of the first three circular contours Cn(E) in the complex C plane. C.(E) 
represents the approximate n-pole thermal Green's functions C.(E, T) for a given E (ImE > 0) 
and for all values of the real parameter T (- oc < T < oc). 
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(3.13) (3.12), which yields 

There exists the following theorem: 

Theorem 16: Let E be fixed in the half-plane 

1mE > 0 (ImE < 0) 

and let T vary along the whole real axis. Then g = 
Gn(E, T) describes a circular contour Cn(E) in the 
half-plane Img < 0 (Img > 0); the center of this 
circle is at the point 

Qn(E)P n-l (E) - Qn-l (E)p;;rEY 

Pn(E)Pn-1{E) - Pn_l(E)Pn(E) ' 

and its radius is 

_1_ • _--=-1 __ 
n-l 

IE - '£1 0 IPk (E)12 
o 

(3. 14) 

(3. 15) 

The equation of the circle Cn(E) may be written in 
the form 

(3. 16) 

Furthermore, it can be shown that the circular 
area surrounded by the contour C n (E) lies entire­
ly within that of C n - 1 (E) and the circumferences 
of the circles touch. The proof of the last state­
ment is simple. We note first that the expression 

(3. 17) 

is positive for lines which lie outside the circle 
Cn(E) and negative for lines lying inside. Indeed, 
since (3. 17) is zero only on the contour C n (E) it 
must, obviously, have different signs at both sides 
of it. Moreover, 

where 
n-l 

(3. 21) 

As a result, we derive a geometrical picture which 
is schematically presented in Fig. 1 where the 
first three cirCles have been sketched. Equation 
(3.16) implies that the first circle C 1 (E) is given 
by 

(Reg)2 + (Img + 2I~Er = (2~Er (3.22) 

and does not depend on the moments of the SWF. 
Thus, C 1 (E) is quite general and will be the same 
for an arbitrary physical model. The circles C 1 (E) 
and C 2 (E) touch at the point A!, 

(3.23) 

which is defined by the first moment of the SWF. 
The sequence of the circles, {Cn (E»~, has to tend 
to some limit when n grows infinitely, since for 
the circular areas surrounded by these contours 
we have 

(3. 24) 

Let us adopt the notation 

(3.25) 
n --t 00 

Generally speaking, Coo (E) may be either a limiting 
point or a limiting circle. In the former case we 
encounter the determinate moment problem (in the 
sense that its solution is uni9.ue); in the second, an 
infinite number of functions lall the pOints of the 
contour Coo(E)] solve the problem. This makes it 
indeterminate. 

From the physical point of view this poses an 
interesting question: Is it possible that the SWF 
moment problem for a certain dynamical system 
is indeterminate? This would happen when the 
radius of the limiting circle Coo(E), (3.15), would 
tend to a finite limit, or, in other words, when the 
series (3.19) converge for n -700. We will return 
to this question in Sec. 5 where we show that the 
answer is unequivocally negative. 

An = :6 IPk (E)12 > O. 
o 

(3.19) 4. THE COMPLEX G PLANE 

Therefore, (3.17) is certainly positive when Igl-7 
00. Thus, it is positive for all lines lying outside 
C n (E) and negative for those inside. NOW, dropping 
the last term from the sum in Eq. (3. 16), we have 
for a point g lying on the contour C n (E) 

- n-2 
g - ~ +:6 IQ k(E) - gPk(E) 12 ~ 0, 
E-E 0 

(3.20) 

which proves that the circle C (E) lies inside 
Cn - 1 (E). The equality sign in (3.20) is valid only 
for the common point of the two circles. Its exis­
tence follows straightforwardly from the definition 

We proceed, concentrating our attention on the case 
of a continuous SWF. In the,previous section, we 
introduced the functions Gn(E, T) [see (3.12)] and 
described their geometrical behavior on the com­
plex plane. We turn now to the question of what 
kind of physical information is carried by these 
functions. 

Making use of Lagrange's interpolation formula, 
we write 

( ) 
Qn(E, T) ~ Qn(A~n),T) 

GET= =L.J 
n' P n (E, T) k=l P~ Nn), T)(E - A~n)}' 

ImT = 0, (4.1) 
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where p~ (A1n), T) stands for the derivative of the 
quasi orthonormal polynomial of order n at the 
point A1n). By A1n) (k = 1,2, ... ,n), we denote the 
zeros of P n (E, T). As was mentioned, they are real, 
simple, and separated by the zeros of the polyno­
mial Qn(E, T). We may, thus, write 

It can be easily shown that the coefficients 

== (n)(T) = Qn(Ak, T) 
Ilk Ilk P~(Ak' T) 

(4.3) 

have the following properties: 

(i) They are real and positive. 
(ii) An arbitrary polynomial R(E) of degree.;; 2n -

2 satisfies the equality 

(4.4) 

(iii) The relation holds: 
n 

~ ll~n)(T) = so. 
k=1 

(4.5) 

Indeed, property (i) follows from the fact that the 
coefficients (4. 3) may be represented in the 
form 12 

(4. 3 ') 

Hence, there exist polynomials R n _2 (E) and R n - 1 (E) 
of degrees.;; n - 2 and .;; n - 1, respectively, such 
that 

NOW, by Lagrange's interpolation formula 

n R n - 1 (A k) 

R n-1 (E) = P n(E, T) ~ p' ( )(E _ A.> 
k-1 n Ak, T 

and using (4.6), we have 

t R 2n-2(A'> 
R n_1(E) = Pn(E, T) k=1 P~(Ak' T)(E - A/ 

since Ak are zeros of the polynomial P n(E, T). 
Furthermore, froin (4. 6) and (3. 11) we have 

(4.7) 

(4.8) 

c)u{R2n _2(u)} = c)u{Rn_1(u)}. (4.9) 
Thus, 

n R 2n _2(A'> {p n (u, T)l 
c)u{R 2n _2 (u)} = ~ P'(A ) c)" _ A ' (4.10) 

k-1 k' T U k 

which completes the proof of (4.4) by virtue of 
(3.9). Finally, (4. 5) follows straightforwardly from 
(4. 4) under the assumption R(E) == 1. 

Returning to (4. 1) let us first rewrite this relation 
by use of the notation (4.3): 

n Ilk 
Gn(E, T) = L --. 

k=1 E - Ak 
(4. 11) 

A formal expansion of this expression yields the 
series 

1 n 1 n 
Gn (E, T) = - ~ Ilk + - ~ IlkAk + ... 

E k=1 E2 k=1 
1 n 

+ -- ~ /I Am + ... (4 12) 
Em+1 ti "'"k k ,. 

and using (4.4) we have 

(4. 13) 

In the particular case of T = ° the equality (4. 4) 
holds for polynomials of degree 211 - 1 also; there­
fore 

Gn(E, O) = ~ _k +0 __ • 2n-1 s (1) 
.=0 Ek+1 E2n+1 

(4.14) 

On the other hand, the analytical continuation of the 
Green's function, (1. 8), is given in terms of the 
SWF moments (2.4) by the series 

00 s 
G(E) = ~ ~1. 

k=O E 
(4. 15) 

The comparison of (4.14) and (4. 15) illuminates 
the' question concerning the information carried by 
the functions Gn (E, T). It becomes clear that 
Gn(E, r), with T varying along the real axis (- 00 < 
T < (0), represent a continuum of functions which 

, are the n -pole approximations to the exact Green's 
function G(E). Being analytic, these functions have 
a Lehmann representation with the 11 -pole approxi­
mate SWF 

n 
An(w, T) = 21T L ll~n)(T)O(W - A~n)(T», 

k=1 
(4. 16) 

which satisfies the first 211 - 2 moment equations 
of the system (2.4). When T = 0, this is true for 
the (2n - 1)th moment equation also. Using (4.16), 
we may write (4.11) in the familiar form 

00 dw An(w, T) 
Gn(E, T) = [00 21T E- w • (4. 17) 

In the previous section we considered the geome­
trical picture of the successive n-pole approxima­
tions of the thermal Green's function. We recall 
that on the complex G plane, Gn (E, T) is located on 
the circular contour Cn(E) which lies entirely in 
the lower (upper) half-plane if ImE > 0 (lmE < 0). 
As was mentioned, the contour Cn(E) encircles all 
the contours of higher order while touching the 
Circle C n - 1 (E) (see Fig. 1). 

Thus,the sequence{G n (E, T)}Q' tends to a limit when 
n ~ 00. In case of a limiting point (a determinate 
moment problem) this limit will,obviously,be G(E). 
The case of a limiting circle is irrelevant to our 
discussion. It will be shown in the following sec-
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tion that the SWF moment problem for a well­
defined physical system cannot be indeterminate. 

Since the Green's function G(E) will always be en­
circled by the contour C 1 ~E), we have 

normal polynomial P n (E) given by (3. 4) is the 
absence of the normalization factor (Dn _1Dn)-1/2, 
which does not exist here since Dn :; O. This poly­
nomial, however, still satisfies the orthogonality 
conditions 

IImG(E)1 ~ 11/lmEI, sgn ImG(E) = - sgn ImE <I>{Pn(E)'EIt} = 0, k = 0,1, .,. ,n -1. 
(4. 18) 

(4.21) 

and 
- 11/2 ImEI ~ ReG(E) < 11/2 ImEI. (4. 19) 

One may derive similar inequalities by considering 
circular contours of higher order. These increas­
ingly will contain more information about G(E). 
However, involving a successively growing number 
of moments sn' they, obviously, depend on the dyna­
mical properties of the system. Thus, (4. 18) and 
(4.19) represent the most general restrictions on 
the real and imaginary parts of the analytically 
continued Green's function. 

We turn now to the case of a finite-order multipole 
SWF. The pro'\:>lem we encounter here differs from 
the former one by the fact that the determinants 
DIt belonging to the given sequence {sn}9' vanish for 
k ? n, n being the number of poles of G\E). We re­
call that it is sufficient to show that Dn :; 0 to en­
sure the vanishing of all higher-order determin­
ants. Intuitively, according to our geometrical pic­
ture, we expect here An(E, 0) to solve the entire 
problem. In fact, the moments of the SWF depend 
on the energy parameters of the dynamical model. 
Varying these parameters (or introducing ficti­
tious interactions), one might restore the positive­
ness of the sequence {sn}Q°. Let us assume that as 
a result of such a variation we obtain Dn ::: E, 

where E is an arbitrary small positive quantity. 
Then due to the definition of the orthonormal poly­
nomials (3.4), the radius of the circle C n+l (E), 
(3.15); would also become arbitrarily small. Since 
the solution of the problem, G(E), is enclosed by 
the contour C n +1 (E), it will tend with E ---70 to the 
point where the circles C +1 (E) and C n (E) touch. 
And this is, obviously, G):E, 0). 

The problem, however, has to be treated in a more 
rigorous manner. Since DIt > 0 for k = 1,2, •. , , 
n - 1, there exists a finite positive sequence 
{s • .}~n-2. Thus, the functional (3. 1) ~i.ll remain 
positive if its domain has been restrlCted to the 
manifold of the polynomials of degree ~ n - 1. 
Therefore, one may repeat all the previous deriva­
tions concerning the polynomials PIt(E) and QIt(E) 
of degree m ~ n - 1 and m ~ n - 2, correspon­
dingly. Hence, we introduce the polynomial 

So Sl s2 sn 

i\(E) = 
s1 s2 S3 sn+l 

(4.20) 

sn-l sn S ... n+l s2n-l 

1 E E2 En 

The only difference between (4. 20) and the ortho-

The zero s of P n (E), A ~n) are ,_Ob(Vi)OUSlY, identical 
with those of P n (E). Using P n E ~stead of the 
non-existing orthonormal polynomIal Pn (E), we can 
construct the functions Gn(E, 7) which on the com­
plex G plane will be represented by the circular 
contour C (E). The SWF belonging to Gn(E, 7) 
satisfies the first 2n - 2 moment equations (2. 4) 
when 7 is finite, and 2n - 1 equations when 7 ::: O. 
Moreover, A (E, O) satisfies in this case the 2nth 
moment equ:tion as well, since the additional con­
dition Dn :; 0 determines s2,n as a single-valued 
function of the moments {Slti5 n - l • 

It remains to show that An (E, 0) solves the entire 
moment problem. To this end, let us recall first 
that the solution of our problem has to be sought in 
class of functions represented by (2. 7) and con­
sisting of n 1) functions. This follows from the fact 
that D :; 0 and DIt > 0 for k = 0,1, ... ,n - 1. 
Now this class contains a subclass of functions 
leading to the same sequence {sJa n - l • These will 
yield a continuum of n-pole functions Gn(E, 7), 
geometrically represented by the contour Cn(E). In 
other words, this contour (as well as all lower­
order contours) will be in common for all physical 
systems, the differences in the dynamical behavior 
of which are not reflected in the values of the first 
2n - 1 moments of the SWF. Thus, we have to seek 
the solution of our problem on the- contour C n (E). 

Indeed, assume that this is not true. Then, obvious­
ly, the exact Green's function G(E) had to be repre­
sented on the complex G plane by a point located 
inside C (E). In this case, one might construct on 
the basi; of the given truncated sequence {sJan - l 

a new moment problem where the contour C n+ 1 (E) 
would exist and would include the point G(E). Since 
C n + l (E) represents the class of functions consist­
ing of n + 1 poles, this would imply that for a cer­
tain 7(171 < (0) the coefficient ll~n+1)(7) vanishes. 
This, however, is impossible as can easily be seen 
from the representation (4.3'). 

Finally, since none of the functions represented by 
the contour C (E) but G (E, 0) satisfies the moment 
equations for nS2n _l and S2n' An(E, 0) is the unique 
solution of the posed problem. 

We summarize: If for a given physical model the 
sequence {sJ;f yields Dn :; 0 and DIt > 0 for k ~ 
n - 1, then the SWF (1.9) is given by 

n 
A (w) = 21T .6 Il~n)O(w - A~n», 

It=l 
(4.22) 

where A~n) are t.he zeros of the ~olynomial (1- 20) 
and the coefficzents Il~n) are defmed by (4.3). 
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5. THE DYNAMICAL SPECIFICATIONS OF THE 
GENERAL PROBLEM 

The fact that what is under consideration is a mo­
ment problem associated with the SWF of a dyna­
mical system imposes certain specific features 
upon the problem itself. It can be shown, for in­
stance, that in this case the problem is always a 
determinate one. We turn here to the discussion 
of those conclusions which follow from focusing 
our attention on physical systems, exclusively. 

To this end let us introduce the Hilbert space H 
spanned by all various products of an odd number 
of one-particle fermionic creation and annihilation 
operators. The elements of H are, thus, 

We define a scalar product by associating to every 
pair of elements e i and ej the number 

(5.2) 

The operator L, given by (2. 5) is obviously defined 
on the whole space H. L is apparently symmetric: 

(5.3) 

however, not necessarily bounded. 

Of particular interest to us will be the subspace 
Hv ~ H generated by c v E H and represented by 
the elements 

e~u) == Lnc v, n = 0,1, .... (5.4) 

The dimensionality of Hv is given by the number of 
poles of the termal Green's function Gu(E), (1.8). 

To prove this statement we observe first that 

(e(v) e(v» == (Lnc Lmc) == s(v) == <J.>(v) (En oEm) 
n , m u' U m+n '( ) 

5.5 
where <J.>(v) is the linear functional given by (3. 1) 
and associated with the moment problem for the 
SWF (1. 9). Using (5.5), it is easy to see that the 
elements 

d~v) == P~v)(L)cu' n = 0, 1, .•• ,j (5.6) 

form an orthonormal set in Hv' Here P~u) are the 
polynomials of the first kind given by (3.4) and 
their existence for n > j has been assumed. As a 
matter of fact, 

(d~v),d~» == (P~v)(L)cv' P~)(L)cV> 
== c)(v}(P~u)(E)oP~)(E» == 0n.m (5.7) 

by virtue of (3. 3) and the additiveness of the 
linear functionals. 

Now, if the SWF under consideration is a continu­
ous one, then the polynomials P n exist for all nand 
(5. 6) with j ~ ex:> represent an infinite orthonormal 
basis in Bv' Thus, in this case the dimensionality 

of Hy is infinite. On the other hand,in a case where 
the number n of poles of Gu(E) is finite, then (5.6), 
with j = n - 1, represent an orthonormal set con­
Sisting of n elements. It remains to show that this 
set is complete in H u , i.e., that it is a baSis in this 
subspace. 

This becomes apparent by considering the poly­
nomial P n which was introduced in the previous 
section by (4.20). Since in the n-pole case 

(P(v)(L)c P(u)(L)C) = D(v} = 0 n v' n v n , (5.8) 

it follows that 

P(v}(L)c = O. n v (5.9) 

Therefore, e~v) may be represented in terms of the 
n orthonormal elements d~u)(i = 0,1, ..• ,n - 1). 
Consequently, the same will be true for every e~) 
with m ? n. Thus, the set (5.6) with j = n - 1 
forms an orthonormal basis in Bu , and its dimen­
sionality is n. This completes the proof. 

The dimensionality of Hv represents, obviously, the 
number of eigenstates of the dynamical system on 
which a Single one-particle state might have been 
projected. The electronic state given by the set of 
quantum numpers {v} is orthogonal to all the states 
contained by the subspace H~, complementary to 
Hu' 
At this stage we would like to illuminate the ques­
tion which was pointed out in Sec. 3: Does there 
exist a physical system for which the SWF moment 
equations would lead to an indeterminate moment 
problem? This question, obviously, arises exclu­
sively in the case of a continuous SWF, since 
otherwise, as was formerly shown, the solution is 
unique. 17 

We consider the equation 

Lv - Ev = 0, ImE "" O. (5.10) 

If this equation has a nontrivial solution v (u) E Hu , 

then expanding it in terms of the basis (5. 6) one 
might write 

00 

v(u) = ~ xkdr,:'). 
k= 0 

(5.11) 

Here 

x
k 

= (d1"l,v ev» = (P(k)(L)cv,V(U» = (cu,v(u»P<;:)(E), 

(5.12) 
where in the derivation of the last equality we 
made use of (5. 10). Thus, 

(5. 13) 

Therefore, the condition for the existence of a non­
trivial solution of Eq. (5. 10) is the convergence of 
the series 

(5.14) 
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If (5. 14) converges, then (5.13) represents the 
general solution of Eq. (5. 10) and the indices of 
defect of the operator L are (1,1). On the other 
hand, if (5.14) is a divergent series, then a non­
trivial solution of Eq. (5. 10) cannot be found and 
the defect indices of L are (0,0), i.e., L is self­
adjoint. We recall that the moment problem is 
indeterminate when the series (5. 14) converges 
and determinate otherwise (see Sec.3). Since the 
operator L, (2.5), has to be by definition Hermitian 
in Hy, we conclude: A moment problem for the SWF 
of a dynamical system is always determinate. 

The subspace Hy is invariant with respect to the 
operator L. Since all the zeros of a real quasi­
orthogonal polynomial P n (E, T) are simple (see 
Sec. 3), the spectrum of the associated operator L 
has to be simple in Hy. Thus: The eigeneletr,ents 
of Lin Hy are nondegenerate. 

In other words, representing a Single-particle 
state in terms of the eigenstates of the dynamical 
system, one derives a linear combination of states 
referring to different total energies. Let us 
assume that the dimensionality of Hy is n. Then, 
beside (5.6) with j = n - 1, one might consider a 
different basis in Hy comprising the eigenelements 
v~n) of the self-adjoint operator L. These, obvious­
ly, represent the subset of the eigenstates of the 
dynamical system contained by H y • Writing 

(5. 15) 

we have for the mth moment 
n 

s~) = (cu, Lmc) = 6 IY1n)12(x~n»m, 
k=l 

(5. 16) 

where x~n) is the eigenvalue corresponding to v ~n): 

Lv (n) = x(n>V (n) 
k k k' 

(5.17) 

Recalling now the formal expreSSion for the SWF, 
(4. 22), the physical meaning of its constituents 
becomes clear. More specifically, the positive 
coefficient J1.~n), given by (4.3'), is nothing but the 
square absolute value of the projection of the 
Single-particle state c y on the eigenstate v ~n): 

(5.18) 

X1n) is the energy corresponding to the state v ~n). 
Thus, the spectrum of L in Hy is simple since the 
Xts are zeros of a quasiorthogonal polynomial. 
This remains true also for the case of a continuous 
SWF when n ~ 00. 

The physical interpretation of the coeffiCients 
J1.).ml(T) and x~m)(T) appearing in the expression 
(4.16) for an approximate SWF which satisfies the 
first 2m - 2 SWF moment equations and does not 
satiSfy the higher ones can be given in a similar 
way. To this end we consider the subspace Hm k 
Hy k H spanned by the first m elements of the 
basis (5.6). In this subspace we define an operator 
Lm(T), assuming 

dey) == P(y)(L)c = P(Y)[L (T)]c 
n nun m lJ' 

n = 0, 1, ... ,m - 1 (5.19) 

and satisfying the operator equation 

P(Y)[L (r)]c = TP(Y) [L (T)]C 
m m v m-l m u' (5. 20) 

where - 00 < T ~ 00 is a real constant. Equations 
(5.19) and (5.20) define an operator on the linear 
manifold (5.4) with n = 0, 1; ... , m - 1. The 
operator Lm( T) differs from L by the requirement 
that starting from the mth step, Lm (T) generates 
elements which are contained by H m , i.e., 

m -1 
, (5.21) 

(5.22) 

where Pk(T} are certain r-dependent coefficients. 
It is easy to see that (5.19) and (5. 20) furnish a 
complete definition of Lm(T) and this operator is 
self-adjOint in Hm.' Denoting by v ~ml( r) the eigen­
elements of Lm (T ), we have 

m-l 
C = 6 z(mlv(m)(r) z(m) = (v(m)(T) C) (5.23) 

y k=O k k ' k k' y' 

Hence, substituting this expansion into (5.20), we 
derive 

m-l 

6 z~mlp~l[X1m)(T), r]v~m)(T) = 0, 
k=O 

(5. 24) 

where x~m)( T) is the eigenvalue corresponding to 
v~m)(T): 

L m(T)v1m)(T) = X1m)(r)v~m)(T). 

It follows, therefore, that the x~m)( T) are the zeros 
of the quasiorthogonal polynomial P m(E, T) given 
by (3.10). Similarly, the J1.~t)(T) represent the 
square absolute value of the projection of the 
Single-particle state C y onto the eigenstates of the 
operator Lm (T). Thus, the calculation of the ther­
mal Green function in terms of the approximate 
n-pole SWF implies the fact that the exact eigen­
states of the physical system have been approxima­
ted by those of the operator Lm(T). 

Significant to this apprOximation scheme is the 
speed of convergence of the eigenvalues and eigen­
elements of Lm (r) to those of the operator L. Sup­
pose that L is completely continuous and, there­
fore, bounded. Then the eigenvalues of L in Hy 
could be arranged in numerically decreaSing order 
starting from X~), having the maximal absolute 
value, i.e., 

I X(y) I > Ix(Yll > ... > Ix(y)1 > ... ~ 0 o 1 n • (5. 25) 

Consider the element w~) E Hy given by 

(5.26) 
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where 

Rs,v2 1 (,\) = (,\ - ,\~»(,\ - ,\<[» .•• (,\ - '\c:!-I) 

x (,\ - '\~~1) ... (,\ - '\~21). (5. 27) 

Substituting into (5.26) the expansion of Cv in terms 
of the eigenelements of L, v~) E Hv ' we derive 

00 

w(v) = Y (v)R(v) (,\(v»v(v) + 
n m n-l m m 6 yr)R~~I('\~/»v~), 

k:n 

y~) = (V~/), c), (5.28) 

wherefrom it follows that w~) belongs to the sub­
space H~m) C HlI orthogonal to the first m eigen­
elements v b"), v 'i), ... ,v ~~1' According to our 
notation (5. 25),'\<:,( is the eigenvalue having the 
maximal numerical value in this subspace. Fur­
ther, let ,\~+1)( T) be the corresponding eigenvalue 
of the approximate operator L n + 1(T). For brevity 
of script we shall neglect, henceforth, the indica­
tion of the T dependence. This will not affect the 
generality of our derivations. Now, since w~) by 
definition belongs also to the subspace Hn+l span­
ned by the first n + 1 elements of the basis (5. 6) 
in H lI , we have by virtue of the variational prinCiple 

? (Ln+lw~/), w~» 
,\(n+ 1) 

m .,: "w (lI)" 2 ' n 

(5.29) 

where the upper sign has to be taken for ,\~+1) > 0 
and the lower for ,\~+1) < O. We note, furthermore, 
that from the definition ofthe operator Ln+l' (5.21), 
and due to the particular choice of the element 
w~), (5.26), we have 

(L W (lI) W (lI» = (Lw (lI) w (lI» 
n+ 1 -n' n n' n • (5.30) 

The equality (5. 28) implies 

00 

/lW(lI)" 2 = ~(lI)[R(lI) (,\(lI»]2 + 6 ll(lI)[R(lI) (,\(lI»]2 
n m n-l m k=n k n-l k ' 

and 
/lev) = Iy (v)/2 (5.31) 

(Lw (lI) W (lI» = ,\(lI)" (lI)[R (lI) (,\(v»]2 
n' n m"" m n-l m 

00 

+ 6 "r)llr)[R~~I(,\(~»]2. 
k=n 

(5.32) 

The substitution of (5.30)-(5.32) into (5.29) yields 

~~+l) 
00 

,\(v) + [1/Il(v)] 6 ,\(lJ)ll(v)[R(u) (,\(lI»/R(V) (,\(v)]2 
? '" m k:n k k /1-1 k n-l m 

~ 1 + [l/Il(v)] fj 11 (v)[R (V) (,\(v»/R(v) (,\(lI»]2 
m lI=n k ,,-1 k n-l m (5.33) 

Since / ,\(v)/ .,: / ,\(v)/, (k ? n), it follows that 
k n 

IR s,v2 1 (,\~» I 
IRs,v2 1 ('\<,:?) I 

1,\(11)1 + I,\(v)I I,\(v) / +. I,\(v)1 I,\(v) I + 1,\(11)1 
'" 0 n m-l n m+l n 
~ I ~(II)I - I,\(v)I ••• I,\(v) / - 1,\(11)/ I .\.(v)I - I.\. II / o m m-1 m m m+1 

/ ,\~~ 1/ + / ,\~)/ 

/'\~)I - I ;\~~11 
(5.34) 

Thus, for a fixed m this quantity tends to zero 
when n ---'J 0() [Cf. (5. 25)]. Therefore, neglecting 
terms of second order, one might rewrite the in­
equality (5.33) as follows: 

> 1 00 ~R (v) (,\(V»~ 2 
,\(n+1) ~ ~(v) __ 6 (,\(v) _ '\(V»/l(V) n-l k 

m ~ m ,,(11) k= n m n k R(II) (,\(v) 
,.... m n-1 m 

(5.35) 
or for any sign of ,\~+l) 

(5.36) 
This inequality indicates the speed of convergence 
of our approximation scheme. The eigenvalues of 
the approximate operator L,,( T) [the zeros of the 
quasiorthogonal polynomial Pn(E, T)] tend to the 
corresponding values of the exact spectrum faster 
than any geometric progression. The approximate 
eigenelements v~m)(T) have to behave, obviously, 
the same way. 

6. THE APPROXIMATE QUADRATURES 

The vast majority of physical systems of interest 
involve particle-particle interactions. These 
interactions, being represented in the Hamiltonian 
by products of at least four second quantization 
operators (ct ct ell c II for binary collisions), give 

1 ~ -3 4 
rise to the well-Known hierarchy of equations of 
motion of the one-particle Green's function. In the 
language of our formalism, this means that here the 
SWF moments (2.4) are expressions involving 
thermal averages, correlations of successively 
growing order. Therefore, the only information 
which one may derive, in practice, from the calcu­
lation of the determinants Dn is confined to the pos­
sibility of proving that the Green's function G(E) 
consists of more than TI poles. This, when D" is 
essentially positive. However, except for some 
trivial cases it can not be shown, usually, that a 
determinant Dn vanishes, since the thermal 
averages are unknown a priori. Bearing in mind 
our previous discussion, it is needless to say that 
the vanishing of the nth determinant Dn would indi­
cate that the hierarchy of the equations of motion 
of the characteristic function (1. 10) becomes 
closed after the nth step and vice versa. 

Nevertheless, the moment approach enables one to 
construct formal expressions of the successive 
approximations ofthe SWF. In fact, an approximate 
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n-pole SWF can always be written as given by 
(4.16). The characteristic feature of such an 
approximation is its T dependence. More specifi­
cally, calculating a certain statistical quantity A 
in the n-pole approximation, one derives an ex­
preSSion An ({T ,J), the numerical value of which 
depends on the set of the real parameters {TJ. It 
is clear that at the final stage the thermal averages 
involved in /l~n}( T) and A~n}( T) will have to be evalua­
ted in some self-consistent manner. This implies 
that not just the, SWF but the moment problem it­
self (given by the positive sequence {sn};;')' will 
become approximate. Let us, however, ignore this 
difficulty. For the purposes of the present paper it 
will be sufficient to discuss formal expressions for 
the approximate SWF or, in other words, to assume 
that the moments sn are known explicitly. This, by 
the way, will always be the case when systems with 
one-particle interactions are considered (impurity 
scattering, electron-field interaction, etc.). 

In the general case of a system with binary inter­
actions we have 

H=Ho + HI' (6.1) 

where Ho stands for the unperturbed Hamiltonian 

(6.2) 

The free-particle spectrum € k.o is measured, as 
usual, with respect to the chemical potential J.!. The 
interaction energy is given by 

HI = ~ 2:; 6 k +k k +k ¢ (k 2 - k 3) 
ol'kl' ...• k 4 .o2 1 2' 3 4 

X c+ c+ C C (6 3) 
kl'0l k 2 ·o2 k

3
.a2 k

4
.a

1
• • 

Here y > 0 is a coupling constant and ¢ (k 2 - k 3) a 
real symmetric function. 

We introduce the characteristic function 

A(q.a)(t) = ([c'f. . C (t)] > q .0' q.a +. (6.4) 

Now in terms of the corresponding SWF, the par­
ticle distribution function will be given by 

(n q.o) = 1: (dw/21T)j(W)A<q·o}(w). (6.5) 

Hence, using the equation of motion for (6.4), 

(i :t - €q.a)A<q·o)(t) = ([[HI' C!,o]-; c q,a(t)l+), (6.6) 

one easily derives the formal expression for the 
mean interaction energy 

(H/) 1 00 dw 
-V = 2V E f -2 (w - €q o)f(w)A(q.o)(w), (6.7) q.o -00 7r • 

whence the total energy of the system is given by 

(Ii> E - /IN 1" foo dw -V = V = 2V LJ -2 (w + €q o)f(w)A(q,a}(w). 
g.a -00 7r ' 

(6.8) 

A similar expression can be derived for the 
thermodynamical potential 

n = - (3-1 In Tre- Il11• 

It is easy to see that 

41- no 1 lY dy' 
V =v 0 7 <~)(Y') 

(6.9) 

1 y dy ' 00 dw 
= 2V 2:; 1 --, 1 2'" (w - €q.o)/(w)A<q.o)(w), 

q.a 0 y 00.. (6.10) 

where no stands for the free energy of the unper­
turbed system (y = 0). 

In what follows, we discuss the thermal average of 
an arbitrary dynamical operator, say A, under the 
assumption that it is given by 

A = 2:; foo d
2
W F(w)A(v)(w), 

v -00 11" 
(6.11) 

where the function F(w) is a product of a certain 
polynomial R(w) and the Fermi function/(w): 

F(w) = R(w)f(w). (6.12) 

All the thermal averages mentioned above are 
particular cases of the generalized expression 
(6.11), Moreover, all equal-time correlations 
which one might derive from the hierarchy of 
equations of motion are expressible in the same 
form. Thus the expression (6. 11) is quite general. 

Since the exact SWF is unknown, we turn to the dis­
cussion of the approximate values of 11 which fol­
low from (6.11) as a result of subatitution of the ap­
prOXimate n-pole SWF instead of l\.\UJ(w). We have 

::fAT J) =.6 Joo d
2

w F(w)A(nv)(w; Tv} 
IJ -00 11" 

where A~) == ~~IJ}(T) are the zeros of the quasi­
Q,rthogonal polynomial P~v}(E; T). We refer to 
An({Tv}) as the nth approximate quadrature. As 
was mentioned before, this is an approximation 
which depends, in general, on the set of real para­
meters {TJ(- co < Tv ~ co). In the framework of a 
given a~proximation, all the values of An ({Tv)} for 
aU pOSSible sets of parameters {Tv] have to be 
conSidered, in prinCiple, as being equally reliable. 
There is no particular reason for preference. 

The first question which arises here concerns the 
convergence of this approximation scheme. In a 
case where the numerical values of the parameters 
Tv = 0, this problem becomes settled by virtue of 
the following theorem. 18 

Theorem: Let F1 (w) = "6:'0 cn w2n be an inte­
gral transcendental function with nonnegative co­
efficients, such that ~;:o 1l2i c i converges. Then 
if F(w), when Iwl --? co, is dominated by F 1 (w), then 

limA~V)(O) = XCv). (6.14) 
n~OO 
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Here A~lJ)(O) is the one-particle nth approximate 
quadrature with Tv = 0: 

00 
A~)(T) = 100 (dw/2lT)F(w)A~)(w; T), (6.15) 

and A(v) is the exact quadrature &iven by the same 
integral with Nv)(w) instead of A:)(w; Tv)' The val­
idity of this theorem in our case is obvious, recal­
ling that F(w) is given by (6.12). 

Without loss of generality we will again neglect 
the quantum indices v. Our intent is to show that 
Jor every T there exists such a T~ such that 

(6.16) 

To this end we construct a polynomial of the de­
gree 2n - 4, R 2n _4 (w), such that 

R2n_4(A1n-l)(T'» = F(A~-l)(T'», 
k :::: 1, ,n - 1 (6. 17a) 

R2n_4(A~n)(T» = F(A~n)(T», 
k = 1, ... ,r - 1, r + 2, .•. ,n. (6.17b) 

Thus, R 2n-4 (w) is Lagrange's interpolation poly­
nomial of the function F(w). The interpolation is 
based on 2n - 3 points-all the zeros of the quasi­
orthogonal polynomial P n-l (E; T') and n - 2 zeros 
of P neE; 7). 

NOW, since an approximate n - pole SWF satisfies 
the first 2n - 2 moment equations, we have 

f "" dw = -00 211 R2n-4 (w)A (w), 

whence using (6. 17a) and (6. 17b), we derive 

~(T, 7') :::: Jl.<;t)[F(x<;t» - R2n_4(A~n»] 

(6.18) 

+ /1~n!l[F(A~n?l) - R2n_4(x~nl1)]' (6.19) 

The polynomial R 2n -4 (w) depends on both 7 and T', 

since these parameters define the interpolation 
basis. We have to prove that for a fixed T we can 
choose such a 7' that (6. 19) vanishes. 

Let us first investigate the behavior of A~n)( T) (for 

.(n-O 
"1 (01 

.. (n.ll 

Xn.s) "s (0) ,,(noS) 

an arbitrary n) as a function of T. Since A(n)(T) is 
k 

a zero of P,,(E; T), 

P n (A~n); T) == P n Nn» - TP n-l (A~n» == 0 
and 

(6.20) 

(6. 21) 

Differentiating (6.20) and substituting (6.21), we 
derive 

(6.22) 

Making use of the Christoffel-Darboux formula, 19 

,,-1 

(1)-x) L; P k (A)Pi'1) 
k=O 

== bn - 1[Pn (1)Pn - 1 (A) - Pn(X)P,,-1 (1)), (6. 23) 

where bn- 1 > 0 is given by (3. 6), we may rewrite 
the denominator of (6.22) in the form 

P; (A CZ)Pn -1 (A":}) - Pn(X ":})P';'1 (X~·» 
1 n-1 (Il) 

=-b- L; IPi (Ak )12. (6.24) 
n-1 i =0 

Finally, substituting (6.24) into (6.22) and using 
(4.3'), we have 

(6.25) 

Thus, when T varies along the real axiS, x~\r) 
moves between two consequent zeros of the ortho­
normal polynomial ~-1(E). The speed of variation 
of A~) (T) is positive and reaches zero at both ends 
of this interval. Recalling that the zeros of the 
polynomial Pn(E) are separated by that of Pn-1 (E), 
we draw _a schematic picture of t~e inter~als in 
which A~ 1) (T') and ,\~ (T) vary (Flg.2). Smce 
d,\/dT is positive, the growth of T causes the x~) (7) 
to move in the positive direction between the 
boundaries of the corresponding interval. 

Assume that T is given. Whatever the value of Tis, 
there will exist two neighboring roots, A~)(T) and 
~~1 (7), belonr.ing to the same interval of variation 
of some ,\~-1 (7'). These roots we choose as the 
missing ones in the interpolation basis of R 2n- 4 (w) 
[Cf. (6. 17b)]. 

,,(n-l) 
"'n_3(0) 

(n 2) An:
3

co) 
I.n'11 

(0) 
n-2 I..n-2) 

n_2(0) 

1

1 (0) 1\ S (0) 

- 00 _in;~ll)I ______ t--_t--I_t-A;Ttl)± ______ _ 'f (n·1) I .t·~I-J An•2l1 1 
n-1 ) 00 

ReE 
-t--Xn

) (1) I..nJ(t) A~(t)-
n·S n-l 00 

FIG. 2. The intervals of variation of the zeros of the quasiorthogonal polynomials p ... 1 (E, T) and p.(E, T) when the parameter T 
varies along the real axis (schematic)_ 
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Now, consider such a T' that 

(6. 26) (7. 1) 

Then, obviously, the function 

<i>(w) = F(w) - R 2n- 4 (w) (6.27) 

will have opposite signs at the points A~)(T) and 
A~l (TL Suppose it is positive for ACrj and negative 
for A~l (Fig. 3). Then, since J.1.Crj and lJ.~l depend 
only on T which is fixed by assumption, a(T, T/) 
will change the sign when X~-l) (T/) varies in the 

(n) (n) ) ) 0 (n-l) interval (AT' AT+l • In fact, AJ{, T' > when Ak 
(T/) is arbitrarily close to AT+l (T) and a(T, T/) < 0 
when A~-l)(T') is sufficiently close to XCrj(T). 

Therefore, there will exist a T' = TO for which 
6.(T, TO) = 0, since 6.(T, T/) is a continuous function 
of T'. This completes the proof of (6. 16). 

Although (6.16) has been proven for the case of 
one-particle approximate quadratures (6.15), it 
will, obviously, remain true also for the general 
case (6.13). Thus, we may generalize our state­
ment. 

For every set of parameters h) there exist such 
a set h:} such that 

6. (hJ, {T~}) = An ({TJ) - An-l ({r~}) = 0, 

where An (hul) is given by (6.13). 

(6. 28) 

This is an important result. It shows, first, that 
the approximate quadratures are convergin~ uni­
formly. In fact, taking a set of parameters {TJ, 
where 1 Tv 1 --7 (1), we have 

(6.29) 

We recall that the values of Av;}(T) tend to the roots 
of P"...l (E) when 1 T 1-; (1) [A~) (T) --7 (1) when T --7 (1) and 
~) (T) -; -(1) when T -; -(1)]. The convergence of the 
rhs of (6.29) is guaranteed by (6.14). Moreover, 
(6.28) indicates that the absolute maximum of the 
successive approximations decreases and, corres­
pondingly, the absolute minimum increases. 

This behavior of the approximate quadratures en­
ables one to establish the exact upper and lower 
error bounds of a given approximation. These, 
obviously, will be the absolute maximum and mini­
mum of An(hJ). We note, finally, that for every 
approximation there always exists a set of para­
meters h~O)} for which ~({r~O)}) == A. 

7. THE STATISTICS OF IMPURITY SCATTERED 
STATES 

This section is devoted to an example. The speci­
fic model which we discuss below is a simple one. 
It is based on the physical picture of a metal where 
'free' Bloch electrons are being scattered by im­
purities. The Hamiltonian of the system is given 
by 

Here Ek,a' as in the foregoing section, represents 
the unperturbed spectrum (the spin index a be­
comes relevant in the presence of a magnl(tfc 
field). y> 0 is a coupling constant and Uk,Ta; kl 0 1 

stands for the electron-impurity interaction. it 
depends, obviously, on the particular distribution 
of the impurities, i.e., on their coordinates {r} in 
the lattice of the specimen. The interaction 
u'k{r l'kl I as written in (6. 1) is quite general and .0, ,a 
may represent ordinary potential scattering as 
well as spin-flip processes. 

We confine ourselves to the calculation of two 
thermodynamic quantities, namely, the electron 
distribution function and the mean interaction 
energy. Considering the characteristic function 
(6.4), it is easy to see that the expressions (6.5) 
and (6.7) remain valid for the Hamiltonian (7.1), 
except for the factor ~ in (6.7) which is absent in 
the present case. We have here 

(H[> 1 Joo dw - = - ~ - (w - E )f(w)A<q,a)(w) V V -00 2rr q,a , q,a 
(7.2) 

where HI stands for the second term in (7.1). 

The fact that the Hamiltonian under consideration 
does not contain electron-electron interactions 
considerably simplifies the calculations. In this 
case, the SWF moments are given explicitly by the 
energy parameters of the system. We have 

(q,a) _ <[ + L n ] > - (Wn) 
S" - cq,a' cq,a + - q,o;q,O' (7.3) 

, 

where W is the matrix whose elements are 

This expression contains an unknown term-the 
chemical potential /.I (Ek,a = E~~)a - /.I). In every 
approximation, it will have to be determined self­
consistently from the given electron density 

N=~<n '. L.J q ,01 (7.5) 
q,a 

We turn now to our approximation scheme where 
we will denote the nth approximate qUfflrature of 
<nq,a> by n~q,a)(T), and that of (HI> by H~ ) ({Tq,a})' 

A. The Lowest Approximation 

According to our procedure, we have to calculate 
first the determinant 

flG. 3. See text for explanation. 
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D
(q·o) _ (q.o)s (q.o) (S(q.o»2 
1 - So 2 - 1 

= y2 :0 1 U~~o;k.ol 12> O. 
k~,al 

(7.6) 

It is, obviously, positive definite since our Hamil­
tonian is nondiagonal in the Bloch state represen­
tation. The approximate one-pole SWF is given by 

ishes at the point {rq~~}, where 

T(O) = _ U{r} I(D (q.o~1/2 
q.o l' q.o;q.o 1 • (7. 12) 

It tends to zero when Tq•o -) 00. 

B. The Second Approximation 

A (q.o) (w T ) = 211o(w - A (1) (T )) 
1 'q.o 1 q.o' 

(7. 7) The second determinant is given by 

where A~) is the zero of the quasiorthogonal poly­
nomial 

p(q.o) (E T ) 
1 'q.o 

= (D(q,o»-1/2rE _ s (q.o) _ T (D(q.o»1/2 }. (7. 8) 
1 l 1 q.o . 1 

Thus, 
A (1) (7 ) = s (q.o) + T (D(q.o~1/2. (7.9) 

1 q.o 1 q.o 1 

Using the approximation (7.7) and substituting 
(7. 9) and (7. 3), we derive for the first approximate 
quadrature of the electron distribution function 
(6.5): 

Ii (q.o) (T ) = ffm. + T (D(q.o»1/2]. (7. 10) 
1 q,o LHq,a,q,o q,o 1 

When Tq •o varies along the real axis, (7. 10) 
assumes all the numerical between zero (Tq,o -) 00) 
and 1 (Tq a -) -00) (see Fig. 4). This might be ex­
pected since approximation (7.7) with Tq,o ~ 0 
satisfies just the normalization condition (the 
zeroth moment) and, therefore, reflects a property 
which is in common for all systems in nature. If 
Tq•o = 0, then (7.7) satisfies also the first SWF 
moment equation. This is equivalent to the first 
Born approximation (Hartree- Fock, in case of 
systems with binary interactions). Similarly, for 
the first approximate quadrature of the mean 
interaction energy (7.2), we have 

~ iff) ({rq.o}) 

=.-!" [u{r} + T (D(q,o»1/2]n(q·o)(T ) V L.J l' q,o;q,o q.o 1 1 q.o • 
q.o (7.11) 

This quantity tends to -00 when Tq•o -) -00. It van-

rim 

s(q·o) 
0 

s(q·o) 
1 

s(q·o) 
2 

D(q·o) -
2 -

s(q·o) 
1 

s(q·o) 
2 

s(q·o) 
3 

s(q·o) 
2 i q•o) 

3 
s(q·o) 

4 

= (W(4» D(q·o) _ (W3) d(q·o) 
q.o;q.a 1 q.o;q.o 1 

+ (W2) d(q·o) > 0 (7.13) q,o:q,o 2 ~, 

where 

d ~q.o) = (W3
)q.o;q.o - Wq.o;q.o (W

2 
)q.o;q.o 

and 

(7.14) 

d~q·o) = Wq.o;q.o (W3
)q.o;q.o - (W2);'O;q.o' (7.15) 

We assume that D~q·oJ does not vanish for the given 
scattering potential. Using the definitions (3.4) and 
(3.10), we have for the second quasiorthogonal 
polynomial 

The zeros of this polynomial are 

A~~2 (Tq.o) = Wq.o;q.o 

+ (1/2D (q.o» (d(q·o) (T ) 
1 q.o 

± {[d(q·o) (T
q

, 0)]2 + 4(D~q·o~3}1/2), (7.17) 
where 

d(q·o)(T ) = d(q·o) + T (D(q·o»1/2 
q.o 1 q.o 2 

2W D (q·o) (7 18) 
- q.o;q.o l' . 

FIG. 4. The first two approximate quadratures for the electron distribution function 
(schematic). B. and B I are the rigorous upper and lower error bounds in the two-pole 
approximation. 
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We turn now to the approximate two-pole SWF 

A~q,o)(w; Tq,a) = 211[I-Lf)6(w - xi2» + I-L~)o(w - x~»]. 
(7.19) 

The coefficients I-L~,~ are defined by (4.3). Using 
(3.13), (3.9), and (7.17), we derive 

and 
iJ (2) = C (q,a) (.\ (2) - W) (7.20) 

1 2 ~~~a 

/J. (2)= - C<q,a) (X (2) - w . ), (7.21) 
2 1 q,a,q,a 

where 
C(q,a) = Diq,a)/{[d(q·a)(T 0)]2 + 4(D~q·a~3}1/2. 

q, (7.22) 

Now, with (7. 19) the second approximate quad­
rature of the electron distribution function (6,5) 
yields 

n(q,a)(T )=C(Q,a){(x(2)_W )f(x(2» 
2 q,a 2 q,a;q,a 1 

_(X(2)_W. )f (X (2»}. (7.23) 
1 q,a,q.o 2 

This is a continuous function of Tq,o' When I Tq,a I 
-) co, it obviously tends to n~q,a) (0) (Fig.4). There­
fore, it has to have at least one maximum and one 
minimum. According to the derivations- of the 
foregoing section, we find 

B = sup n(q,a) (T ),,; 1 
u (r) 2 q,a 

and q,a 

B -I'nf n-(q,a) ( »0 
1- (r)2 Tqa~' 

q,o ' 

(7.24) 

(7.25) 

Bu and Bl represent, correspondingly, the rigorous 
upper and lower error bounds of a calculation 
based on the information contained by the first 
three moments of the SWF. If the fourth moment 
is such that (7.13) vanishes, then 12~q,a) (0) would 
yield the exact value 12 (q,a). 

Before turning to the calculation of the second 
approximate quadrature of the mean interaction 
energy, let us rewrite (7. 2) as follows: 

+.r ~ mIt. t' dw /(w)A(q,a)(w). (7.26) 
V q,a q,o,q,o -00 211" 

The second term is nothing but the diagonal part 
of the mean interaction energy of the system (7.1): 

~<HI>diag = 17E ~~~;q,o<nq,a>. (7.27) 

This part takes care of the forward scattering pro­
cesses. Substituting the approximate two-pole 
SWF into the first term of (7. 26), we derive 

~1i~ ({Tq,o}) - ~(HI>diag. 
= - ~ C(q,o)D~q,o)[f(X~» - f(i\?~]. (7.28) 

q,o 

Since by defin~tion i\~) < i\~), it follows thatf(X~» 
> f(i\~\ c (q,a and D~q,o) are positive. Therefore, 

(7.28) is negat~ve for all possible sets hq,a}' 
Among these WIll be such a set of the parameters 
Tq,a for which the second approximate quadrature 
coincides with the exact value of the mean inter­
action energy. We derive, thus, the following con­
clusion: 

The thermal average of the diagonal part of a 
Hamiltonian which represents a system with 
single-particle interactions overestimates alge­
braically the mean total energy of it. 

This result 

(7.29) 

is valid at all temperatures. It might be consider­
ed as a generalization of the modified Peierls 
inequality20 

TrH e-SHo 

n({Ho}) + X [ ~ n({Ho + AnI})' (7.30) 
Tre -BHo 

where n({H}) is the free energy as a functional of 
the Hamiltonian, which implies that the thermal 
average of the interaction energy taken with the 
unperturbed density matrix overestimates the true 
value of it. 

Higher-order approximations can be derived in the 
same manner. 
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APPENDIX: THE P ADE APPROXIMANT OF THE 
THERMAL GREEN'S FUNCTION 

A Pade approximant21 of a certain function, say 
G(E), is given as a fraction of two polynomials. 
If the numerator q(E) is a polynomial of the degree 
M and the denominator p(E) has the degree N, then 
the fraction defines the [N, M] Pade approximant. 
The coefficients of these polynomials are deter­
mined by equating the terms of equal power in E 
in the equation 

G(E)P(E) - q(E) = AEM+N+l + BEM+N+2 + .. " 

p(O) = 1. (A1) 

Following the usual notation, we write 

[N, M]G(E) = q(E)/p(E). (A2) 

Let us consider the continued fraction 

1 

b2 E - a
o 
______ -=-0 ____ _ 

by 
E - 01 - ------=----

E -a2 ---'. 

!mE '" 0, (A3) 
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where ak and bk are the coefficients (3.6). It is 
well known that in case of a determinate moment 
problem, this fraction is converging and represents 
the Green function (1. 8).22 (A3) is known as the 
real J fraction. Consider, hence, the successive 
approximants of (A3), namely, 

ql(E) _ 1 q2(E) _ 1 
------,--- 2 ' 
P1 (E) E - ao P2(E) E - ao - bo/(E - (II) 

(A4) 

It is easy to see that the numerators and denomin­
ators of these fractions satisfy the finite-differ­
ence equation 

Ykl-l = (E - ak)Yk- b;"IYk-l' (k = 1,2, ... ), (A5) 

with the initial conditions 

PO(E) = 1, 
PI (E) = E - 00. 
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Furthermore, the substitution 

)'0 = Yo, k = 1,2, ... 

(A7) 

transforms (A5) and (A6) into the finite-difference 
equation (3.5) with the initial conditions (3.7) and 
(3.8), the solution of which are, correspondingly, 
the polynomials of the first and second kind Pk (E) 
and Qk(E). Since qN(E)/PN(E) in (A4) represents 
the [N, N - 1] Pade approximant of (A3), we have 

(A8) 

Thus, on the complex G plane (see Fig. 1) the 
successive Pade approximants will be represented 
by the points of touch of the successive circular 
contours Av A 2 , A 3 , •••• 

16 This theorem is due to E. Hellinger [Math. Ann. 86 (1922)J. 
The proof is reproduced in Ref. 12, p. 11. For reasons which 
will become clear belOW, we consider a function of the oppo­
site sign than this in Ref. 12. 

17 Speaking about a unique solution
Jo 

we have in mind a solution 
for a given set of moments {s~0}o. However, when the dyna­
mical system under consideration contains two- (or many-) 
particle interactions, the moments s~u) will be given in terms 
of many-particle equal-time correlations. Thus, they by 
themselves are functionals of the SWF. As a result, one 
might obtain a number of different SWF's satisfying the same 
system of equations (2.4). This would furnish, for example, 
different free- energy functions, the intersection of which on 
the temperature scale would indicate a possible phase transi­
tion. However, since different values of the thermal averages 
lead to different sets of moments, we regard them as differ­
ent moment problems. 

18 Reference 13, p. 123. 
19 Reference 12, p. 9. 
20 The author owes this remark to the referee. 
21 See, e.g., G. A. Baker, Jr., in Advances in Theoretical Physics, 

K. E. Brueckner, Ed. (Academic, New York, 1965), Vol. 1, p. 1. 
22 Reference 12, Sec. 4. Also see D. Masson, Hilbert SPace and 

the Pade Approximant (to be published). 
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This difference equation is of the form 

12o(2)W + I 10<t)W + loW = 0, 

range of J values, rather than the value of W at a 
single J value, because the former is what is mea­

(1. 1) sured by a classical "coarse grained" apparatus: 

where W = W(J) is the 6-J symbol (symmetrized 
Racah coefficient)2 

(1. 2) 

The I's are known functions of the J's, and the 
o(n)rs are "finite difference operators." The latter 
are to the difference calculus what the dn /dJn 
operators are to ordinary calculus: 

O(l)W == W(J + 1) - W(J), 

O(2)W == [W(J + 1) - W(J)] - [W(J) - W(J - 1)], 

= W(J + 1) - 2W(J) + W(J - 1),etc. (1. 3) 

Equation (1. 1) is strongly reminiscent of a 
second-order differential equation, the type that is 
usually solved in WKBJ approximation, and this 
fact, plus the quantum -mechanical nature of the 
6-J symbol, is what got us started thinking of 
WKBJ -type solutions in tge first place. 

We say that a solution is of WKBJ type if it can be 
written in the form 

W= Ae iS , (1.4) 

where A and S can be expanded in the series of 
terms of successively lower order in J: S = So + 
Sl +S2 + ... ,withSn+/Sn = order (1/J);and 
similarly for A. (In the usual WKBJ approxima­
tion, the small expansion parameter is n; here it 
is 1/J.) Just as in the Schrodinger case, W is 
"classically forbidden" for some values of J (that 
is, classical mechanics predicts that W is identi­
cally zero); and for these values S is complex and 
W is a decaying exponential. For other "clasi­
cally allowed" J values, S is real and W is oscUla­
tory. Also, there are "turning points" or J values 
where solution (1. 4) changes from oscillatory to 
exponential. Just as in the usual case, the region 
near turning points requires special treatment. 

Also as in the usual case, the accuracy of the 
WKBJ solution is limited. In order to compute W 
with an error of order 1/J, it is necessary to com­
pute both So and S1' because S2 is the first term 
in the expansion which is order 1/ J. (In contrast, 
A need be computed only to lowest order because 
it does not occur in an exponential.) So is easily 
computed, but 51 and succeeding terms are 
another matter. 

Near a turning point the solution is not so phase­
sensitive; however, the formula used to locate the 
turning point may introduce an error, by giving a 
value for the turning point off by a small integer. 

In practice these inaccuracies may not be a 
serious drawback. In the claSSical limit, what is 
needed usually is an average of W over a small 

J+A 

W2 = E W(J)2/(21l + 1), 
J-A 

~ A2/2. 

The bar over W indicates a root-mean-square 
average,and the 2 in A2/2 comes from the mean­
square average of cos S, supposedly a rapidly 
varying sinusoid. Thus, in the classical limit, the 
exact value of S may not be important. 

Furthermore, the WKBJ solution has the advan­
tage of compactness and simplicity. If one wants 
accuracy, one can calculate W exactly on a com­
puter using (say) the power series for the 6-J 
symbol (Racah's sum).3,4 But such an approach 
tends to bury the general features of the solution 
under an acre of computer printout. 

80 far as we can see, the present paper is impor­
tant to 6-J theory especially for the light which it 
sheds on the behavior of W near turning points. 
Previously, Wigner had calculated A by a geome­
trical method (and as we have just seen, A may be 
all that is needed in the classical limit), but his 
approach does not work near turning points. 5 We 
remark that W has all its relative maxima at 
turning points. 

Equation (1.1) can be rewritten as a three-term 
recurrence relation, rather than a second-order 
difference equation. If we eliminate the I.i (n) W 
using Eqs. (1. 3), we get 

g+W(J + 1) + g oW(J) + g_W(J -1) = 0, (1. 5) 

where 
g+ = 12 + 11' 
go = 10 - 11 - 2/2 , (1. 6) 

Of course, the present method can be applied to 
difference equations (or recurrence relations) 
other than the one for the 6-J symbol. Sufficient 
conditions on the g's for this to be possible are 

lim [(g + - g- )/g-] :s order (1/ J), 
J~oo 

lim (go/g±) 
J-+ 00 

:s order unity, 

lim 6(n)g/g = order J-n. 
J--> 00 

(1. 7a) 

(1. 7b) 

(1. 7c) 

The last condition means that the g's behave like 
polynomials under differencing rather than like 
(say) sinusoids. Differencing lowers the order 
of a polynomial by one but leaves the order of a' 
sinusoid (sinJ, say) unaffected, just as differentiat­
ing does. Often the g's are polynomials (or simple 
roots of polynomials) so that condition (1. 7c) is 
usually satisfied in practice. Condition (1. 7b) is 
the one that might be difficult to satisfy. If the re­
currence relation does not satisfy condition (1. 7a), 
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usually a change of dependent variable helps. For 
example, suppose g+ = (J - a)b and g - = 1, where 
a and b are constants. Make the change of depen­
dent variable W = [bJr(J - a)tl/2 W', where r(z) 
is the gamma function, satisfying zT(z) = T(z + 1). 
The recurrence relation for W' then satisfies con­
dition (1. 7a). More complicated cases, where the 
g ± are polynomials or roots of polynomials, may 
be treated by induction on this simple example. 

The present paper can be read both by those in­
terested only in the general WKBJ method as well 
as by those interested only in the 6-J symbol. 
The former should concentrate on Secs. 2 and 4, 
and perhaps glance at Appendices B and C for 
hints on how to treat recurrence relations near 
zeros of g , where conditions (1. 7) are often vio­
lated. Thllatter can skim Secs. 2-3 and perhaps 
skip Sec. 4 altogether, since the main results of 
Sec. 4 are summarized at the beginning of Sec. 5. 
Section 3 discusses two geometrical concepts, 
Wigner's tetrahedron and the (J,J5 ) plane. We 
have found these quite useful for visualizing and 
organizing the algebraic and somewhat abstract 
results of Secs. 2 and 5. Appendix A derives the 
g's for the 6-J symbol from the Biedenharn­
Elliott identity. Appendices Band C discuss the 
6-J symbol near the maximum and minimum 
values of J allowed quantum -mechanically. At 
these extrema, conditions (1. 7) are not satisfied 
and a separate treatment is necessary. The ex­
trema are the only points where neither the turn­
ing point nor the WKBJ oscillating or exponential 
solutions work; therefore, the present paper, in­
cluding Appendices Band C, provides an approxi­
mation scheme for every range of J values in the 
interval min J s J s max J (so long as max 
J - min J is large, of course). Appendix D is a 
mathematical footnote to Sec. 4. Appendix E 
applies the techniques of this paper to the 3-J 
symbol (symmetrized Clebsch-Gordan coefficient). 
We have concentrated on the 6-J symbol in the 
body of the text entirely for historical reasons: 
The techniques of the present paper were deve­
loped incidental to a study of isospin crossing 
matrices, which are essentially 6-J (or rather 
6-/) symbols. 6 Appendix E shows that the present 
techniques work just as well when applied to a 
3-J symbol. 

2. THE WKBJ SOLUTION AWAY FROM 
TURNING POINTS 

In this section for the most part we shall not spe­
cialize to the 6-J case, but shall assume merely 
that the g's obey conditions (1. 7). However, it will 
not hurt to quote immediat€ly the result we get 
when the formalism of this section is applied to 
the 6-J case: 

We remark that conditions (1. 7) on the g's imply 
conditions on the f's defined at Eq. (1. 1). If we 
express the f's in terms of the g's by inverting 
Eqs. (1. 6), 

f2 = g-J 

f1 =g+ -g-~ (2.2) 

fo =g+ +g- +go' 

we find that the f's, like the g's, must be poly­
nomiallike under differencing; furthermore, con­
ditions (1. 7a) and (1. 7b) imply 

lim UJf2 ) s order (1/J), 
J~oo 

lim UoIf2 ) s order unity. 
J~OO 

(2.3a) 

(2.3b) 

Now let us insert ansatz (1. 4) into Eq. (1.1) and 
use the following identities for the difference of 
the product of two functions: 

6 W (AB) =A6(I)B +B6(I)A + 6 W A6 W B, (2.4) 

II (2)(AB) = All (2) B + Bo (2)B + 2ll (1) All (1) B 

- (0 (2)Ao (l)B + O(2)]JO (l)A) 

(2.5) 

These identities follow readily from the defini­
tions (1. 3). Setting W = AB and using Eqs. (2. 4) 
and (2.5), we get 

f 2[6(2)A-6<1)A +A]6(2)B 

+[f2(26(I)A-o(2)A) +f1(o(l)A +A)]O(l)B 

+ [f26 (2)A +fI 6(1)A +foA]B =0. (2.6) 

We now separate out the terms of highest-order 
in J. We may make the ansatz that A and S behave 
like polynomials under differencing, hence that A 
and B (== exp is) in Eq. (2. 6) behave like a poly­
nomial and a Sinusoid, respectively, under differ­
encing. Therefore, ° (n) A is n orders smaller than 
A,and o(n)B is the same order as B. Further­
more,!l is one order lower thanf2 , from Eq. 
(2.3a). Therefore, the highest-order terms in Eq. 
(2.6) are thef2Ao(2)B andfoAB terms. We get 

(2.7) 

where [c5(2)B]HO means we are to difference ReB 
and throwaway all but the highest-order term 
which results. The first and second differences of 
ReB == cosS follow from definitions (1. 3) and some 
trigonometry [use the identities sin(e l ± ( 2 ) = 
sinel cos8:a ± cosB 1 sin82,cos(8 1 ± ( 2) = cos8 1 
COS8 2 'f sine l sin82]: 

6 (1) cosS = cosS (coso (1) S - 1) - sinS sino (1) Sol 
(2.1) (2.8) 

The formalism also gives us a difference equation 
for So [Eq. (2.10)], which we interpret geometri­
cally in Sec. 3. 

0(2) cosS = 2 cosS(COSc5(I)S -1) + cos(S - 6(1)S) 

x (COSc5(2)S -1) - sineS - o (l)S) sinc5(2)S. 
(2.9) 
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We have to proceed cautiously in deciding which 
terms in Eq. (2. 9) are of highest-order. If S ~ 
order J2, then 0 (2) S ~ order unity, and all terms 
in Eq.(2.9) are order unity. If all terms in Eq. 
(2.9) are order unity, then Eq. (2. 7) becomes a 
complicated equation connecting 0 (2)S and 0 <:t)S to 
tanS. Very likely all the S's satisfying such an 
equation would be sinusoidal rather than poly­
nomial-like under differencing. We therefore try 
the ansatz S:s order J for large J. S must be at 
least order J, since if S:s order unity, exp(iS) 
would be approximately equal to (1 + is), which is 
polynomial-like under differencing. By process of 
elimination, therefore, S must be order J for large 
J, and this in turn implies that [0 (2) B] HO is the 2 
cosS term in Eq. (2. 9) (with S replaced by [S]HO = 
So everywhere). Equation (2.7) becomes 

cosS[2f2(coSO(1)SO -1) + fo] = 0 
or 

o (1) So = 2 arcsin(fo/4f2)1/2. (2.10) 

We can check that this result is consistent with 
our ansatz that So is order J and polynomial-like 
under differencing. Equation (2.10) and (2. 3b) im­
ply that sin1 B (1) So is order unity and polynomial­
like under differencing. This does not look plaus­
ible at first glance, because sin1 B (l)SO is a sinu­
soid, not a polynomial. However, a sinusoid will 
become polynomial-like when its argument is 
order unity and polynomial-like. [Proof: Use 
identity (2.8). If S on the left is order unity and 
polynomial-like, then B (l)S on the right is small, 
and sino <:t) S ~ 0 (l)S, etc. Hence cosS differences 
like a polynomial. QED] Hence Eq. (2.10) allows 
o (1) So to be order unity and polynomial-like. . 
Therefore, So itself can be order J and polynomial­
like, consistent with our ansatz. 

In order to obtain an equation for A o, we must con­
sider the next-to-highest order terms in Eqs. (2.6) 
and (2.7). These are (with sino(2)S ~ 0(2)SO) 

- f2 A(2 cosS sino (1)Soo (1)Sl + 0 (2)SO sin(S - 0 (l)S)] -f20 (1) A[2 cosS (coso (l)S - 1)] 

+ (2f20(1)A + f1A)[cosS (COSO (l)S -1) - sinS sino (l)S] = O. (2.11) 

The last square bracket comes from the 0 (1) B 
term in Eq. (2. 6), the middle square bracket 
comes from the 0(2) B term in Eq. (2. 6), and the 
first square bracket comes from the lower-order 
corrections dropped on going from Eq. (2. 7) to 
Eq. (2.10). Equation (2.11) can be separated into 
a cosS and a sinS term: 

A cosS [(-2 sino (l)SOO (1)Sl + 0(2)SO sino (1)S)f2 

+ (coso (1) S - 1)ftl + sinS[- (0(2)SO coS0(1)S)!2A 

- (20 (1) Af2 + Af 1) sino (1) S] = O. (2. 12) 

Now suppose that the second square bracket is not 
identically zero, and imagine (2.12) divided 
through by A cosS times this bracket. The equa­
tion would then say that a function with sinusoidal 
behavior under differencing (tanS) equals a func­
tion with polynomial behavior. This is a contra­
diction; hence both square brackets in Eq. (2.12) 
must vanish. This gives us two equations, one for 
higher-order corrections to So (we ignore this 
equation) and one for Ao: 

(2. 13) 

This Ao is polynomial-like under differencing, 
consistent with our original ansatz. 

Equations (2.10) and (2.13) are two first-order 
difference equations which replace the single 
second-order difference equation (1. 1). They are 
the basic equations of the WKBJ approach. 

We can obtain an approximate solution to these 
equations as follows. Make a Taylor series ex­
pansion of o(n)Ao and o (n) So' 

o(l)A o = Ao(J + 1) -Ao(J) 

= dAo(J) + (~) d2AO(J) 

dJ 2! dJ2 + ... 

and similarly for the other differences of Ao and 
So. Since Ao and So are polynomial-like,succes­
sive derivatives will be down by factors of (1/J); 
hence, only the highest derivatives need be kept: 

dA 
o(1)Ao ~ d/' etc; (2.14) 

i.e., we can replace differences by derivatives 
everywhere in Eqs. (2.10) and (2.13). In simple 
cases, these equations can then be solved imme­
diately by integration. In the 6-J case, for exam­
ple,wheref1 = 0(1)f2 (cf.Appendix A,Eq.(A9), 
Eq. (2.13) gives 

2 lnAo = -In[sino(1)So] -lnf2 + In(C/2), 

where C is an integration constant. Substituting 
for sino (1) So from Eq. (2.10), we get 

(2. 15) 

Even when f 1 '" {j (]) f2' we will get a solution of 
type (2.15) iff1 ~ (p + 1)df2/dJto order J,where 
P is some constant: 

(2.16) 

Evidently the solution breaks down when f 0 equals 
either zero or f2 [or whenf2 == g- vanishes;but 
this possibility is excluded by conditions (1. 7a) 
and (1. 7b)]. In other words, the solution breaks 



                                                                                                                                    

2442 DONALD NEVILLE 

down at turning points, since,at fo = 0 or 4f2 , W 
changes from oscillatory to exponential [cf. Eq. 
(2.10)]. Mter a digression into the geometry of 
the 6-J symbol (Sec. 3), we shall return to study 
W near turning points in Sec. 4. 

3. GEOMETRICAL INTERPRETATION OF 
THE 6-J SYMBOL 

In this section we restrict W to be the 6-J symbol 
and Eq. (1. 5) to be the recurrence relation for the 
6-J symbol derived in Appendix A. We shall 
sketch Wigner's geometrical interpretation of this 
symbol and then derive a geometrical interpreta­
tion of the g's,/'s, and So' This interpretation is 
useful for locating ''turning points" of W quickly. 
In addition, Wigner's result for Ao' which follows 
readily from the geometry, can be used as a 
"boundary condition" to fix the constant in Eq. 
(2.1) and the normalization at turning points in 
Sec.4. 

We start from the interprehttion of Was a proba­
bility amplitude for .adding four angular momen­
tum vectors J 1 -J 4 to -form a resultant angular 
momentum-of zero. Let IJl3 ,J24 )(0)be the ket 
for the state in which these four vectors have been 
summed to zero in the order 

From the last equations, necessarily J l3 = J 24 , 
and, if we denote Jl3 = J 24 by J 5 , we have the 
situation diagrammed in Fig. 1. Then, again re­
ferring to Fig. 1, we have that 

J 

FIG.1. Wigner's 6-J tetrahedron. 

FIG. 2. J 5 as the 2 axis of a spherical coordinate system. cP is 
azimuth and J 1 lies in the X2 plane. For clarity J is not shown. 

(3.1) 

is the quantum -mechanical probability that the 
vector J = J l2 = J 34 will have length J, given that 
vectors J l -J5 have lengths J l -J5 and add to zero 
as shown in Fig. 1. Evidently this probability is a 
function of the 6 J's J l' ... , J 5' J, and the function 
W is defined and normalized so that 

(2J + 1)(2J5 + 1)IW12 =P(J). (3.2) 

Now if we imagine that we are adding together 
very large vectors J, we can set P(J) equal to the 
classical value for this probability, and thereby 
obtain an equation for I W I 2, 5 

P(J) -t 2.l ¢/21T or zero. (3.3) 

cP = CP(J) is the angle between the planes J 1 J 3 J 5 

and J 2J 4J 5 in Fig. 1 or Fig. 2, and it is not fixed 
even after all lengths J 1 -J 5 are fixed. Every 
value 0 ~ cP ~ 21T is equally probable; hence P(J), 
the probability that J will have length J, is pro­
portional to .l cP, the increment in cP as J changes 
in length from J to J + 1. There is a 2 in the 
numerator of Eq. (3. 3) because cP passes through 
a given Jtwice between 0 and 21T. 

P(J) is zero, classically, if J is so large or so 
small that the tetrahedron of Fig. 1 cannot be 
formed. To see how this might happen, imagine 
that in Fig. 1 the (dotted) vector J is increased in 
length indefinitely, the other vectors remaining 
fixed in length. The sides J l J 3J 5 and J 2J 4J 5 of 
the tetrahedron will pivot about J 5 as common axis 
until eventually the tetrahedron flattens to a 
quadrilateral. At this point, J still has not reached 
the largest value allowed quantum -mechanically 
[max J = min(Jl + J 2,J3 + J 4)];but,classically, 
larger values of J are not allowed, as further in­
creases in J would break the figure. The classical 
P(J) is zero for those J's which break the figure. 
The quantum mechanical P(J) is not zero, but we 
may expect that any J-value at which the tetrahed­
run flattens to a figure uf lower dimension corres­
iJonds to a "turning point" of the WKBJ solution, 
where W changes from oscillatory to damped ex­
ponential in character. In the previous section we 
found that turning points correspond to zeros of 
f 0 or 4f2 - f 0' and later on in this section we shall 
find that such zeros indeed do correspond to 
zeros of V, the volume of the 6-Jtetrahedron. 

But first let us complete the calculation of the 
classical P(J), Eq. (3. 3). Mter several lines of 
vector algebra, one finds cos cP in terms of the 
angles given in Fig. 2: 

J'f + ~ - 2Jl J 2 cosel cose2 - J2 
coscp = 2J J . e . e (3.4) 

1 2 SIn 1 SIn 2 

(Strictly speaking J2 is J(J + 1), not J2;we are 
approximating J(J + 1) by J2 throughout this sec­
tion.) Equation (3.4) can be differentiated to give 
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an implicit expression for d<PldJ. Then one can 
calculate tt.<P , 

J +1 d<p 
tt.<p::::: J d- dx 

J X 

== J [2J1J 2 sinel sin liz sincp(x)]-12xdx 

~ [2J1J 2 sine l sine2 sincp(J)]-l J 2xdx 

~ [2J1J 2 sine l sine2 sincp]-lJ. (3.5) 

In the second from last step we have assumed that 
cp(x) varies slowly between x ::::: J and x == J + 1, 
so that sin<P(x) ~ sincp(J). [This is not true for 
cp ~ 0 or rr, where dCPldxrx(sin<p)-l which blows 
up: The present calculation breaks down at turn­
ing points.] In the last step we have taken 2J + 
1 ~ 2J. The square bracket in Eq. (3.5) is essen­
tially the volume Vof the 6-J tetrahedron: 

6V == I J 1 x J 2oJ5 1 == J 1 J2 J 5 sinG 1 sinG2 sincp. 
(3.6) 

Hence tt.cp ~ JJJ6V. Combining this with Eqs. 
(3.2) and (3.3) and taking a square root, we get 

W == (24rrV)-1I2 (3.7) 

or zero, for cp not too close to 0 or rr where the 
V-1/2 blows up. The bar over W is a reminder 
that W is a root-mean-square average over a 
small range of values of J, as in the Introduction: 

J+t;. 

W(J)== [(2tt.+ 1)-1 6 IW(x)12)1/2]. (3.7') 
x=J-t;. 

Now let us interpret the g's and fts geometrically, 
and relate V to the fts. For the remainder of the 
section, we shall switch from J 5 to J as z axis, 
and call our new azimuthal and polar angles ~ and 
1/1 to avoid confusing them with the old cp and e 
(see Fig. 3). 

By repeated application of the law of COSines, one 
can calculate the cosine and sine of !J; 2 and !J; 4 in 
terms of the lengths of the edges; for example, 

(3.8) 

(2JJ2 sin1/l2)2 ::::: (J + J 2 - J 1 )(J + J 2 + J l ) 

x (- J + J 2 + J 1)(J - J2 + J 1 ). 

(3.9) 

Therefore, when the J's are large, 

(3.10) 

to order J2. For go we get a slightly more com­
plicated expression, 

(3.11) 

where cos1/l24 is the angle between J 2 andJ4. We 
need to express Jhis last cosine in terms of the 
1/1 's and ~. Let J be a unit vector along J, etc.; 
then 

cos1/l24 ::::: ;]2';]4 

::::: (sin!J; 2' 0, cos!J; 2) 

'(sin1/l 4 cos ~ ~ sin!J; 4 sin~, cos1/l4) 

== sin1/l2 sin!J; 4 cos ~ + cos!J; 2 cos!J; 4' 

Using this expression to eliminate COS!J;24' we get 

(3.12) 

A geometrical interpretation for the fts now fol­
lows from relations (2.2): 

f2 ~ 4JJ2 J4 sin1/l2 sinl/l4, 

fl ~ 0, (3.13) 

fo ~ BJJ2 J4 sinl/l2 sinl/l 4 (1 + cos~). 

Now we can express V in terms of the f's. At Eq. 
(3.6) we computed V from J 1 X J 2' J 5' We could 
equally well have used J 2 X J 4 0 J which would have 
given us 

6V == JJ2J4 sin!J; 2 sinl/l 4 sin~ 

::::: JJ2J 4 sinl/l 2 sinl?' 4 (1 + coS~)l/2 (1 - COS~)l/2 
or (3.14) 

Equation (3.14) establishes our contention that 
turning points of the WKBJ solution (f 0 ::::: ° or 
fo ::::: 4f2 ) correspond to points where the 6-Jtet­
rahedron collapses to a figure of lower dimension 
(V --70). Inserting Eq. (3. 14) into Eq. (3.7), we get 

FIG. 3. J as the z axis of a spherical coordinate system. ~ is 
azimuth and J 1 lies in the X2 plane. For clarity J 5 is not shown. 

J 

~A c 

FIG. 4. Boundaries of the classically allowed region in the 
(J, J 5) plane. 
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a formula for the rms value of W in the classically 
allowed region, 

(3.15) 

If we recall that W2, the mean-square value of W, 
is Ai5/2, it follows that the constant in Eq. (2.1) is 
(4/n). 

Formulas (3.13) for fo and f2 give us a geometri­
cal interpretation for 0(1) So' Eq. (2.10): 

° (1) So = 2 arcsin[(l + cos;)/2J1/2 

= 2 arcsin[cos(U2)J 

= 2 arcsin[sin(~/2 + n/2)J (3.16) 
or 

A useful way to visualize the classically allowed 
region is to think of W as a square matrix array 
depending on two variables, a row index J and a 
column index J 5 , and then plot the boundaries of 
the classically allowed region in (J, J 5) space. 
Thinking of W as a function of two variables is 
natural in the many applications where J CJ4 are 
held fixed and W is essentially a matrix transfor­
mation from states labeled by J 5 to states labeled 
by J. In Fig.4,we show the part of the (J,J5 ) 

plane bounded by the four straight lines J = max J, 
J:= min J, J 5 = max J 5 , J 5 = min J 5 • In addition, 
we show (schematically) the boundaries of the 
classically allowed region for a case in which no 
two of the vectors J 1-J4 are equal. The classi­
cally allowed region is bounded by the four curves 
AB,BC, CD,DA. These are the curves where fo or 
4f2 - fo = 0 [from Eq. (3.15)J or, equivalently, 
where cos; = ± 1 [from Eqs. (3. 13)J. As one moves 
from the center out across anyone of these boun­
daries toward the edges in Fig. 4, one enters a 
classically forbidden region and the elements begin 
to decrease exponentially. 

In the most general case (no two vectors J 1 -J 4 

equal) the classically allowed region touches each 
edge at only one point, as shown in Fig.4. In 
special cases where two or more of J 1 -J 4 are 
equal, however, two or more of the points ABeD 
may move to corners, with the result that an entire 
edge J 5 = min J 5 or J = min J becomes classically 
allowed. (The boundary curves never intersect the 
edges J = max J or J 5 = max J 5 at more than one 
point, however.) We leave it to the interested 
reader to verify the foregoing statements by ex­
perimenting with the geometry of the 6-J tetrahed­
ron, Fig. 3. 

4. THE SOLUTION NEAR TURNING POINTS 

Mter this digression into geometry for the special 
case W:= 6-J symbol, we now return to the general 
case and solve Eq. (1.1) near turning points (fo = a 
or fo = 4/2 ), We continue to assume that conditions 
(1. 7) or (2.3) are satisfied, even near turning 
points, and in particular we assume that /2 (= g -) 

is nonzero. (For a discussion of the case f2 ~ 0, 
see Appendices B and C.) In addition, we assume 
that the functions fo and fo - 4f2 have zeros of 
inlegc1' order at their turning points J o [that is, 
the functions vanish as J - J o)n, n = integer], 
though we do make a few remarks about how one 
might handle zeros of noninteger order. (In the 6-J 
case f 0 and f 0 - 4f2 vanish linearly at their turn­
ing points: n = 1.) 

If Eq. (1. 1) were a differential equation, one would 
obtain solutions near turning points by changing 
the dependent variable so as to get a wave equation 
d2W/dJ2 + k2(J)W 0=: O. Then one would approxi­
mate k 2 ~ const x (J - J o)n near the turning-point 
J o' Finally, one would solve the resulting equation 
exactly and get a Bessel function. Something quite 
similar works for the difference equation. The 
solution in the difference case also turns out to be 
a Bessel function, although not always the same 
Bessel function as in the differential case. 

In order to get Eq. (1. 1) into "wave equation" form 
(Le., eliminate the first difference term), we sub­
stitute 

W=RV, ( 4.1) 

so that Eq. (1.1) becomes Eq. (2. 6) with A, B -7 

R, V. We then demand that the coefficient of /) (1W 
in Eq. (2. 6) be identically zero. This determines 
R: 

f 2(2o(1)R - Q<2)R) + f
1
(o(l)R + R) 0=: 0, (4.2) 

and Eq. (2. 6) becomes a "wave equation" for V: 

f 2[o(2)R -1i(1)R + R]1i(2) V 

+ [f20(2)R +f10(1)R +//lJV=O. (4.3) 

Of course, the coefficients in Eq. (4. 3) depend on 
R, so that we must find a solution to Eq. (4. 2) be­
fore we can solve Eq. (4. 3). We shall try to find 
an approximate solution, valid to order 1/ J. We 
try the ansatz that at least one solution to Eq. (4. 2) 
is polynomial-like under differencing. Since f1 is 
one order smaller than f 2' according to condition 
(2. 3a), the f21i(2)R and f 1 0(1)R terms are negli­
gible in Eq. (4. 2). This equation then collapses t:> 
a first-order equation 

(4.4) 

Clearly this equation is consistent with our ansatz 
that R is polynomial-like, since 11/f2 = order (1/J) 
from condition (2. 3a). Further, since the differ­
ence o(1)R is small compared to R, 0(1) can be re­
placed by d/dJ as was done in Eq. (2. 14), and Eq. 
(4.4) can be integrated to obtain the desired 
approximate solution. In the 6-J case, where 
f1 = 0(1) 12 ~ dI2/dJ, this solution is 

R ~ (f2)-l/2, (4.5) 

where we have set a constant of integration equal 
to one, without loss of generality. 



                                                                                                                                    

ATE C H N I QUE FOR SOL V I N G R E CUR R ENe ERE L A T ION S 2445 

An exact solution to Eq. (4. 2) can also be obtained 
in the 6-J case, or in any case where [l21U2 + f1)]n 
is a ratio of polynomials for some choice of n. 
For the details see Appendix D. 

Now we return to Eq. (4. 3) and eliminate R from 
it. We write the second square bracket of this 
equation as 

Evidently, from Eq. (4. 4) and the polynomial-like 
nature of R 1, the first two terms in the bracket 
are order (1/J2) and can be neglected. The third 
could be small also, though perhaps not negligibly 
small like the first two, because we are supposing 
ourselves near turning points, and one way to get 
a turning point is to have fo vanish. (The other 
way is to have fo = 4/2 ; we shall consider this 
case in the second from last paragraph of this 
section.) We assume 10 ~ 0 and expand Uo112 ) in 
a Taylor series about its zero: 

where z is the distance from turning point J 0' n 
is the order of the zero of 10 at J 0' and d. is a 
constant: 

.G == J - J o' 

10(Jo) = 0, 

l/d = lim UoI12 zn). 
z-+o 

(4.6) 

(4.7) 

(4.8) 

Since lolf2 = (g+ + g- + go)lg - ~ 2 + golg­
from Eq. (2. 2) and condition (1. 7a),go/g - and 
therefore 10112 must be dimensionless near the 
zero,which means (fo//2 ) = order (z/J)n, or 

d = order (In). (4.9) 

Hence the U 0112 ) term is order J-n, small but not 
necessarily negligible. Dividing through Eq. (4. 3) 
by the coefficient of () (2) V (~/2 R) and neglecting 
all but highest-order terms, we get 

{)(2) V + (znld)V = order (VIJn+1, VIJ2), (4. 10) 

where the (znld)Vterm is order VIJn, larger than 
those neglected. [Of course, if n ::::: 2, the (znld)V 
term is as -small as the (V/J2) terms we have neg­
lected, and Eq. (4.10) reduces to () (2) V ~ 0, V ~ 
linear function of z. Therefore, n::::: 2 is a trivial 
case, and from now on we need consider only the 
nontrivial case 0 < n < 2.] From now on we drop 
the terms on the right-hand side of Eq. (4.10), 
replaCing them by zero. 

If n is not an integer (if n ;>! 1), the only way we 
know of to solve Eq. (4.10) is to approximate ()(2) V 
by d 2 VI dJ2 ; the solutions to the resultant differen­
tial equation are essentially Bessel functions 

V = c± z 1/2 J±P[2P(- Z IIP/d)1/2], 

P = l/(n + 2). 
(4.11) 

Equation (4.11) is just the usual WKBJ solution to 
the SChrodinger equation, discussed in many quan­
tum mechanics text books'! The approximation 
{)(2)V ~ d2VldJ2 has to be scrutinized carefully, 
however, because conceivably it could lead to 
errors of the same order as the (z n I d) V term in 
Eq. (4.10). By an argument similar to the one 
used in Eq. (2.14), {)(2)y - d2VldJ2 is order VIJ2, 
provided V is polynomial-like under differenCing. 
In the present case, V is not polynomial-like, how­
ever, since () (2)y I V would then be order II J2 
rather than order z n I d = order II In. Hence a 
careful discussion, which we do not give, is needed 
to establish the limits of validity of solution (4.11) 
when n '" integer. 

If n = 1, Eq. (4.10) can be solved as it stands with­
out replacing () (2) by d2 I dJ2. The solutions are 
Bessel functions, though not the Bessel functions 
of Eq. (4.11). To show that V is a Bessel function 
for n = 1, we start from the recurrence relation 

(4.12) 

which is satisfied for Z, a Bessel, Hankel, or Neu­
mann function. Subtracting 2Zp(w) from both sides 
of this equation, we get a second difference on the 
left: 

(4.13) 

The subscript on () ~2) indicates we are differencing 
with respect to the index, not the argument. Now 
taking 

W = - 2d, 

P = z - 2d, 

()¥,)={)~n)== ()(n), 

we find 

() (2) Z z-2d (- 2d) = - (z/d) Z z-2 d (- 2d), 

(4.14) 

(4. 15) 

which is just Eq. (4.10) for n = 1. Therefore, near 
z = 0, 

V(z) = c 1J z- 2d (- 2d) + c2N z - 2d (- 2d), d< O. 
(4.16) 

We should explain why we impose the condition 
d < 0 at Eq. (4.16). The next step in determining 
the solution near turning points is to expand Eq. 
(4.11) or (4.16) asymptotically in both directions 
from the turning point (z -7 ± 00) and join it up to 
the WKBJ solutions found in Sec. II. The functions 
occuring in Eq. (4.11) can be expanded readily 
enough using Hankel's asymptotic series for func­
tions of small order but large argument. The 
functions occuring in Eq. (4. 16), however, have both 
large order (z - 2d) and large argument (- 2d). 
In such a case it is necessary to use Debye's 
series rather than Hankel's. 7 In the literature, 
Debye's series are often quoted only for the case 
in which the order (z - 2d) and the argument (- 2d) 
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are both positive. If d as defined in Eq. (4. 8) turns 
out to be positive, it is therefore more convenient 
to use 

V(z) = c 1J-Z +2d(+ 2d) + c 2N- z +2d(+ 2d), d > 0, 
(4.17) 

as our solution. Equation (4.17) is equivalent to 
Eq. (4.16) because Jp(x) and Np(x) can be expressed 
as linear combinations of J_ p(- x) and N_ p(- x). 

So far we have considered only turning points 10 = 
O. If we are near a turning point where 10 = 4/2 , 

we change the dependent variable from W to W' 
defined by 

W(J) = (- l)J W'(J). (4.18) 

By direct substitution into Eq. (1. 5) it is easy to 
see that W'(J) obeys the same recurrence relation 
as W, except for go --7 - go everywhere. Hence W' 
obeys the same difference equation as W, except 
that in Eqs. (2. 2) 

(4.19) 

Using definitions (2: 2) and condition (1. 7a), we 
verify that 1'0 vanishes at turning points 10 - 4/2 
= 0: 

10 = 10 - 2g- - 2g+ 

= 10 - 2g_ - 2g_ + 2(g_ -g+) 

= 10 - 4g- [1 + order (1/J)] 

~/o - 412 , (4.20) 

Hence near turning points 10 - 4/2 = 0 we can re­
peat the whole of the preceding discussion with 10 
replaced by 10, W replaced by W', and d replaced 
by a quantity d' defined by 

(4.21) 

To summarize, the solution near turning points 
10 = (J - J o)n / d is W = R V with V determined by 
Eq. (4.16) for n = 1 and d negative, or Eq. (4.17) 
for n = 1 and d positive, and R determined by Eq. 
(4.4). For n = 2,3,4, ... , V is a linear function of 
z. The solution near turning points 10 = 412 is the 
same as that near turning points 10 = 0, except 
W = (- l)J RV; and, in V, d is replaced by d', the 
quantity defined at Eqs. (4.19) and (4.21). 

5. THE 6-J SYMBOL NEAR TURNING POINTS 

Now let us apply the theory of Sec. IV to the 6-J 
symbol. So far we know that W is of the form 
W = RV near 10 == 0 turning points, and W == 
(- l)JRV near 10 == 4/2 turning points. R for the 
6-J case has been determined already at Eq. (4.5). 
V has been determined up to the constants c i at 
Eq. (4.16) or (4.17). What remains is to deter­
mine these constants. As discussed in the pre­
vious section, Eqs. (4.16) and (4.17) apply only at 
10 == 0 turning points. At 10 == 412 turning points, 

the d in the equations is to be replaced by d', the 
quantity defined at Eqs. (4.19) and (4.21). At the 
end of this section we use the geometrical theory 
of Sec. 3 to distinguish the J-values where 10 = 0 
from those where 10 = 4/2 , and the J-values 
where d or d' is positive from those where d or 
d' is negative. 

To determine c2 ' we evaluate Eq. (4.16) for 
z(- 2d)-1/3 large and positive [or Eq. (4.17) for 
- z(+ 2d)1/3 large and positive].7 This region of 
z-values is "classically forbidden" for the 6-J 
symbol. The Neumann function is a diverging ex­
ponential in this region; hence c2 == O. 

To determine I c1 1 , we evaluate Eq. (4.16) for 
z(- 2d)-1/3 large and negative (a "classically 
allowed" region for the 6-J symbol), join it up 
with the WKBJ solution there, and impose Wigner's 
requirement that the rms value of W must be Eq. 
(3.15) in a claSSically allowed region. According 
to Debye, for z < 0 and - z > 3(z - 2d) 1/ 3 ( I z I 
large but not necessarily order J),7 

J z- 2d (- 2d) 

==sin{-2d[cosa + (a -1T/2) sinal +1T/4} 

x [(1Td cosa)-1/2 + order (d cosa)-3/2], 

where 
(5.1) 

sina == 1 - z/2d, 

cosa == - [z/d - (z/2d)2]1/2. 
(5.2) 

The region of validity of Eq. (5.1) begins at Izi == 
order (- 2d)1/3;hence [from Eq.(4. 9) with n = 1] 
- z/2d == order J-2/3, still small, and a ~ 1T/2. 
Therefore, 

cosa ~ - (- z/- d)1/2 

= sin(1T/2 - a) 

~ (1T/2 - a) - (1T/2 - a)3/6, 

sina == cos(rr/2 - a) ~ 1 - (1T/2 - a)2/2, (5.3) 

cosa - (1T/2 - a) sina ~ (1T/2 - a)3/3. 

Relations (5.3) can be used to eliminate a from 
expression (5.1) 

J Z - 2d(- 2d) ~ sin[- ~ (- Z)3/2 (- d)-1/2 + 1T/4) 

[1T1/2(_ d) 1/4(_ z) 1/4] (5.4) 

[The (- Z)3!2 behavior of this phase checks with 
that expected from the WKBJ solution. Near the 
zero of f 0' the phase So of the WKBJ solution is 
determined by Eq. (2.10) to be 

~o(l)So == arcsin(/0/4 12)112 

~ (/0/4/2)1/2 ~ ~(- z/- d)1/2 
or 

So(z) = 6z0(1)S(l)So(z) ~ 1z 
o(l) S odz 

-= 1(- z/- d)1/2 

= - ~ (- z)3/2 (- d)-1/2 + const.] 
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Now we get an equation for I c1 I by putting to­
gether Eqs. (3.15), (4.1), (4. 5), (4.16) with c2 = 0, 
and (5.4) with the sine replaced by its rms average 
(1/2)1/2: 

(2/11) 112 [10(412 - 10)]-1/4 

::::: [I C 11 (/2)-1/2 (1/2) 1/2J1[ 1T1I2(- d) 1/4(_ z)1/4]. 

On the left we remember that (/0/12) ~ - z / - d « 
1 [Eq. (4. 8), and Eq. (5. 2)ff.] The square bracket 
then simplifies to (2/2)-1/2 (- z/- d)-1/4 and we 
find lell:::::: (-2d)1/2. 

Therefore,near turning points 10::::: O,d < 0, 

where 0, the phase of c l' is as yet undetermined. 

For a turning point with 10 ::::: 0 but d positive, re­
place z and d in Eq. (5. 5) by - z and - d. 

For a turning point with 10 :::::: 4/2 and d' ~ 0, re­
place z and din Eq. (5. 5) by ± Z and ± d', and mul­
tiply Eq. (5. 5) by (- 1)J. 

We emphasize that one formula, Eq. (5. 5), works 
on both sides of the turning point z ::::: 0: There is 
no need to use Bessel functions of real argument 
on one side, Bessel functions of imaginary argu­
ment on the other, and then match them at a boun­
dary, the way one must in solving a differential 
equation by the WKBJ method. In this respect, the 
solution to the difference equation is actually 
Simpler than that to the differential equation. 

Next we determine o. This could be done easily 
enough if we could continue Eq. (5.5) to either of 
the values J =: min J or J ::::: max J. At these ex­
treme values of J, Racah's sum for the 6-J sym­
bol reduces to a Single term, and the phase of W 
is readily evaluated: 3 

phase of W(J:::::: max J) = 1T(J1 + J 2 + J 3 + J 4) 

phase of W(J ::::: min J::::: J i - J j ) ::::: rr(J i + J k + J 5)' 
(5.6) 

where, on the second line, J k is that angular mo­
mentum which forms a vector coupling triangle 
with J i and J 5 • (In other words, there are four 
Clebsch-Gordan coefficients in the expression de­
fining the 6-J symbol, and one of them couples J i 
plus J k to J5.) For example, if min J = J 1 - J2, 
then the phase of W(min J) is 1T(J1 + J3 + J 5). Un­
fortunately,formula (5.5) calUlOt be continued to 
either extremum: It breaks down near J:::: J e (e 
for extremum) because the formula was derived 
assuming 12 had no zeros, and 12 does have zeros 
near J::::: J e • Furthermore, the WKBJ formulas of 
Sec. 2 do not work near J = J e for the same rea­
son. Therefore, what we must do first is investi­
gate the behavior of W(J) near extrema. We have 
done this in Appendices C and D. We find that, if 
W is behaving like e io times a monotonically de­
creaSing exponential in the forbidden region near 
the turning point, then W is still behaving this way 

at the extremum; hence 0 is the phase of W(Je ). 

Similarly, if W is behaving like (- l)J e io times a 
monotonically decreasing exponential in the for­
bidden region near the turning point, then W is 
still behaving this way at the extremum; hence 0 
is the phase of W( J e) minus rr J e' At 10 ::::: 0 turning 
points, therefore; 0 is giyen by Eq. (5. 6); while at 
10:::: 412 turning points, 0 is given by eq. (5. 6) 
minus rrJe • 

Now let us interpret the 10 = 0 and 10:::: 412 turn­
ing points geometrically. From Eqs. (3.13), points 
where 10 ::::: 0 and 10 :::::: 4/2 correspond geometri­
cally to points where cos~ ::::: - 1 and cos~ = + 1, 
respectively, where ~ is the azimuthal angle intro­
duced in Fig. 3. At 10 = 0 the 6 -J tetrahedron is 
"flattened out, " while at 10 = 4/2 it is "folded 
over." In the (J, J 5) plane introduced in Fig.4 and 
at the end of Sec. 3, therefore, 10 = 0 turning points 
lie on the BC and CD boundaries of the classically 
forbidden region (see Fig. 4), the ones closest to 
max J 5 , while the 10 = 412 turning points lie on 
the AB and DA boundaries, close to min J s' 

We can also interpret d ~ 0 and d' ~ 0 geometri­
cally. The sign of d (say) is the sign of (lo/z12 ) at 
z = O. From Eqs. (3.13)'/0 is positive within the 
classically allowed region only, while 12 is poSi­
tive in both classical and quantum-mechanically 
allowed regions. Furthermore,!o must have two 
zeros, one at the Be boundary and one at the CD 
boundary (Fig. 4). Therefore within and on the 
BC-CD boundaries, 

(5.7) 

where J o is the BC turning point,J02 IS the CD 
turning point, andp(J) is a positive function of J 
because 10/12' (J 02 - J), and (J - J 01) are posi­
tive functions of J in the classically allowed 
region. Now dividing Eq. (5. 7) by z(::::: J - J 02' de­
pending on which turning point we are at) and 
evaluating the quotient at z = 0, we get 

d> 0 at J = J 01 ' BC boundary, 

d < 0 at J = J 02 ' CD boundary. 
(5.8) 

Similar arguments applied to 

(4/2 - 10 )/12 

== (J02 - J) (J.- J 01 )P '(J), P' positive, 

give 

d' > 0 at J:::::: J 01 ' (AB boundary), 

d' < 0 at J == J 02 ' (AD boundary). (5.9) 

As remarked in Sec. 3, for special values of 
J1J2J 3J 4, one or more of the points ABeD can 
move into a corner of the plot in Fig. 4, (never the 
lower right-hand corner), so that one or more of 
the boundaries DA, AB, B C coincides with an edge 
J = min J or J s :::: min J 5• The turning point solu­
tion (5.5) then breaks down [for the reasons given 
after Eq. (5. 6)];but one can use the formulas of 
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Appendix C if the turning point is too near min J 
and the formulas of Appendix C again (after a 
little relabeling of the variables) if the turning 
point is too near min J 5' 

6. SPECULATIVE EXTENSIONS OF THE 
THEORY 

C~nceivably, recurrence techniques could be used 
to obtain approximate formulas for the 6/.l symbols 
of the higher groups (SU(3), etc; /.llabels the rep­
resentation). Certainly a Biedenharn - Elliott iden­
tity exists for the higher groups as well as for 
SU(2). There is a complication, however; /.l for 
SU(3) (say) is two numbers, not one, because SU(3} 
has two Ca~imir operators. Probably the most 
natural representation labels to use would be the 
number of quark and antiquark (3 and 3) indices 
on the irreducible tensor corresponding to repre­
sentation j.J.. This labeling would be a natural 
generalization from SU(2), where 2J is the number 
of quark indices. No matter how one chooses the 
labels, presumably one would have to deal with a 
partial difference equation in two variables. 

Something similar seems to happen when we stay 
within SU(2} and attempt to extend the theory to 
the 9-J symbol. So far we have not been able to 
find an equation of type (1. 1) for the 9-J symbol, 
although we have found a system of three coupled 
second-order partial difference equations in three 
variables. We have not worked with these equa­
tions enough to know how tractable they are, but 
the coefficients in the equations have a simple 
geometrical interpretation, just as'1n the 3-J and 
6-J cases. Hence one could bring considerable 
geometrical and physical intuition to bear, and 
solutions might turn out to be reasonably Simple 
to find. 

APPENDIX A: A RECURRENCE RELATION 
FOR THE 6-J SYMBOL 

To derive a recurrence relation of type (1. 1) for 
the 6-J symbol, we start from the Biedenharn­
Elliott identity:8 

W(J) is defined at Eq. (1. 2). H we choose /I = J 2 , 

P = J 4 , the last 6-J bracket in Eq. (AI) becomes 
W(~); furthermore, if we choose /.l = 1, the sum 
over A in Eq. (AI) reduces to J -1:5 A :5 J + 1. 
Equation (AI) has now become a three-term re­
currence relation of type (1. 5), as desired,with 

Gg± = (- l)l+S±l (2J + 1 ± 2) 

x{J l J2 JU1 J±1 

1 J ± 1 J2nJ3 J 4 

Ggo = (-IV+S(2J + 1) 

fJ1 J2 J}fl J Jt_JJ2 J 2 It 
x It J J 2 tJ3 J4 J 4J tJ4 J 4 J 5f 

(A3) 

(A4) 

We are anticipating that the g's will contain a com­
mon factor G to be specified later. Since Eq. (1. 5) 
is homogeneous in the g's, such a factor will cancel 
out eventually. 

All the 6-J symbols in Eqs. (A3), (A4) have at least 
one of their arguments equal to unity. Such 6-J 
symbols can be calculated readily from Racah's 
sum, and general formulas for them are available. 9 

Mter substituting these formulas into Eqs. (A3) and 
(A4), we get 

g+(J)= [(J1 + J2 + J + 2)(J1 + J2 -J) 

X (J1 - J 2 + J + 1)(- J 1 + J 2 + J + 1) 

x (J 3 + J 4 + J + 2)( J 3 + J 4 - J) 

X (J 3 - J 4 + J + 1)(- J 3 + J 4 + J + 1)] 1/ 2 

x (J + 1)-1 (A5) 

g-(J) :=g+(J -1), 

go(J) := 2(2J + l)[J4 (J4 + 1) + J 2(J2 + 1) 

- J 5(J5 + 1)] - (2J + 1)[J2(J2 + 1) 

- J 1(J1 + 1) + J(J + 1)] [J4(J4 + 1) 

(A6) 

- J 3(J3 + 1) + J(J + 1)]/J(J + 1). (A7) 

The common factor G, appearing in Eqs. (A3), (A4) 
but canceling out thereafter, is 

G-l = (_I)J2+J4:J5 4(2J + 1)[J2(J2 + 1)(2J2 + 1) 

X (J4(J4 + 1)(2J4 + 1»)1/2. (A8) 

From Eq. (A6) we have derived a useful result for 
li (1) g _, needed in Sec. 2 : 

lj(1)g_ =g_(J + 1) -g-(J) 

=g+(J) -g_(J), 

or,in terms of the j's, Eqs. (1. 6): 

APPENDIX B: THE 6-J SYMBOL NEAR 
ZEROSOFg± 

(A9) 

This appendix and the next discuss the solution to 
Eq. (1.1), when W(J) is a 6-J symbol and J is near 
max J (Appendix B) or min J (Appendix C). Near 
these points the functions g± have zeros, as does 
the function j-. and the WKBJ -like solutions of 
Sees. 4-5 are not valid. 
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Without loss of generality we can take max J = J 1 + 
J 2 and define a quantity r by 

(B1) 

r an integer ~ O. In addition we introduce the 
symbol x for the distance from J to the extremum: 

(B2) 

From the results of Appendix A, the g's behave as 
follows near x ~ 0: 

go(x) ~ EH, 

g+(x) ~ [x(r + X»)1/2 E, (B3) 

g_(x) ~ [(x + 1)(r + x + 1»)1/2 E, 

where H and E are constants independent of x and 
we have neglected terms of order x/J;, i = 1 to 4. 
Inserting Eqs. (B3) into Eq. (1. 1), we get 

W(x -1)[x(r + x»)1/2 + W(x)H + W(x + 1) 

x [(x + 1)(r + x + 1)]1/2 ~ O. (B4) 

(Here and for the remainder of this appendix, for 
simplicity we have changed the argument of W 
from J == max J - x to x.) By changing the depen­
dent variable in Eq. B4, we can transform it to the 
recurrence relation for the hypergeometric func­
tion. Take 

W(x) = const[r(x + 1) r(r + x + 1)]-1/2 

x aX U(x)/r (- x + b), (B5) 

where a and b are constant parameters to be deter­
mined and U(x) is the new dependent variable. 
Then U(x) obeys 

U(x - 1)[x(r + x)/(- x + b)a] 

+ U(x)H + U(x + 1)(-x + b -1)a = O. (B6) 

This should be compared to the following recur­
rence relation for the hypergeometric function 
F( 0', (3; y; k) == F( 0', y)10: 

F(O' + 1,y + 1)[«(3 - y) O'k/y] 

+ [(0' - 1) - «(3 - y) k - (2 - y)(1 - k)] F(O',y) 

- (y -1)F(0' -1,y -1) = O. (B7) 

Equations (B6) and (B7) coincide provided we take 

0' =-x, 
(3 = [r + 1 + iH]!2, 

y = (3 - (r + x), 

a = i, 
b = B - r, 

k=-1. 

Therefore 

and, from Eqs. (B5) and (B8), we have 

W(x) S?£ W(O)[r(r + 1)/r(x + 1) r(r + x + 1»)1/2 (W 
x [r«(3 -r)/r(-x + (3 -r)] 

x F(-x,(3;(3-r-x;-1), (B9) 

where (3 = (r + 1 + iH)/2. There is a second solu­
tion to Eq. (B7), but it is not of physical interest 
because it contains a factor of 1/r(0') = 1/r(- x) 
which vanishes at physical values of x. Call this 
second solution G( 0', y): 

G(O',y) == [r(y)r«(3 -y + 1)/r«(3 - 0' + 1)r(0')] 

x F«(3 -y + 1,(3;(3 - 0' + 1;k-1). 

In order to verify that G( 0', y) satisfies the same 
equation as F(O', y), substitute G for F into the 
left-hand side of Eq. (B7); then relabel (3 - y + 
1 ---7 0', (3 ---7 (3, (3 - 0' + 1 ---7 y, k- 1 ---7 k. The expres­
sion which results is just the left-hand side of 
Eq. (B7), times a factor, hence must vanish. QED 

Expression (B9) for W looks complex because it 
contains a factor (i)X and it depends on (3, which 
is complex. In fact, expression (B9) is complex 
for general x, but not for physical values of x(x = 
integer ~ O. There is a connection formula for 
the hypergeometric function which states that11 

F(O', (3;y; k) 

== [r (y) r«(3 - O')/r «(3) r(y - 0')](- k)-ex 
• x F( 0', 1 - y + 0'; 1 - (3 + 0'; k- 1 ) 

+ [r (y) r(0' - (3)/r (0') r (y - (3](- k)-8 

x F«(3, 1 - y + (3; 1 - 0' + (3; k-1). (B10) 

At physical values of x the second term on the 
right vanishes due to the r (0') = r (- x) in the de­
nominator. If one then eliminates F( 0', (3; y; k) 
from Eq. (B9) using Eq. (B10), one obtains the 
complex conjugate of Eq. (B9). QED 

For determining the phase of W near turning 
points (in Sec. 5), we need to know the phase of W 
at small values of x. To know the phase, we must 
expand F, and, to expand F, we must know the order 
of magnitude of the parameter H in Eqs. (B3-B4). 
[W depends on H via (3 == (r + 1 + iH)/2.] From 
Eqs. (B3),H ==go (J == max J)/E, where E is order 
(J;)2 [from Eq. (A5)] and go is usually order (J1)3 
[from Eqs. (A7), (3.11), or (3.12)] unless cos~ or 
(cosl/l 2 4 - cosl/l 2 cosl/l 4 ) vanishes at J = max J. 
[The angles are defined at Eq. (3.11) and Fig. 3.] 
Hence H is usually order J;-Le., large compared 
to x. 

Furthermore,H is small only when the turning 
point is quite near max J and the formulas of 
Sec. 5 break down anyway. We can restate this 
geometrically: cos~ S?£ 0 or (cosl/l 2 4 - cosl/l 24 
cosl/l 4 ) ~ O·only near point D in the (J, J 5 ) plane 
(Fig. 4), where the classically allowed region 

U(x) = F(-x, (3; (3 - r -x;-1), (B8) touches max J. 
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Proof; from the geometry of the 6-J tetrahed­
ron, cost/J 24 - cost/J 2 cost/J 4 = cos ~ = 0 exactly at 
D. At points near D on the edge J = max, J, cos~ 
is no longer defined because the 6-J tetrahedron 
cannot be formed; but cost/J 2 4 - cost/J 2 cost/J 4 is 
still meaningful, and the magnitude of this quantity 
must increase as we move away from point D in 
either direction along J = max J, because cost/J 24 
changes monotonically while cost/J 2 cost/J 4 remains 
fixed. Therefore, H is small only near point D 
where max J is very close to a turning point. QED 

In determining the phase of W for the purposes of 
Sec. 5, therefore, we may assume that H-and 
therefore {3-is large compared to x. [No assump­
tion will be made about the size of the parameter 
r in Eq. (B1).] We now expand the Fin Eq. (B9), 
using {3 + (3* = r + 1: 

F(-x,{3;{3 -r -x;-l) ~ F(-x,{3;- (3*;-1) 

= 1 + (- x){3 (- 1) 
(- (3*) 1 ! , 

+ (- x)(-x + 1){3({3 + 1)(- 1)2 
(-{3*)(-J3* + 1) 2! 

"" 1 + (- x) ({3/ (3*) 
- 1! 

+ (- x)(- x + 1) ({31f!*)2 + ... 

= F(- x, 1; 1; (3/{3*) = 11- {3/{3*Y 

= [({3* - (3)/{3*]x ~ [iH/({3 - rW. 

+ ... 

On the last line we used (3* - f3 = - iH. 

Inserting this result into Eq. (B9) and ignoring for 
the moment some factors which do not contribute 
to the phase, we get 

W(x) ex W(O)(Wr({3 - r)[iH/({3 - rW /r(f3 - r - x) 

or finally, since r({3 - r)/r({3 - r - x) ~ ({3 - r)X, 

W(x) ~ W(O)[r(r + l)/r(x + 1) rex + r + 1»)1/2 

x (- H)x. (Bl1) 

Evidently the phase behavior of W(x)/W(O) depends 
on the sign of H: W(x)/W(O) is monotonic (respec­
tively, alternates in sign) for H negative (positive). 
The sign of H follows from the same geometrical 
arguments used to establish the magnitude of H. 
Considered as a function of max J, H has a zero at 
the single classically allowed value of max J(point 
D in Fig. 4); when H is finite, the sign of H equals 
the sign of cost/J 2 4 - cost/J 2 cost/J 4 and is positive 
{respectively, negative) for max J smaller (larger) 
than the classically allowed value. Therefore, 
W(x)/W(O) is monotonic (respectively, alternates 
in sign) near max Jfor (J,J5 ) in the forbidden 
region to the right (left) of point D in Fig.4. Com­
paring this result for J ~ max J to the result of 
Sec. 5 for J ~ J o' we find that W(x)/W(O) has the 
same phase behavior (monotonic, or alternating in 
sign) near J o as it has near max J. This is the 

point which we needed to establish for the pur­
poses of Sec. 5. 

APPENDIX C: THE 6-J SYMBOL NEAR ZEROS 
OF g± (CONT.) 

We continue the discussion of Appendix B, now 
considering zeros of g± near min J rather than 
maxJ. 

We introduce the notation 

so that min J = max (1m I, In I). Then near J = 
min J, 

g+ ex [(J + 1)2 - m2)1/2 [(J + 1)2 - n2]l/2, 

g_ ex [J2 - m2)1/2[J2 -n2)1/2. 

(C1) 

(C2) 

When min J is large, Eqs. (C2) r.educe to equations 
of the form (B3), and the theory of the previous 
section becomes applicable. 

Proof: Without loss of generality, we can take 
min J = m = J 1 - J 2 • We define quantities x', r' by 

then 

x' := J - min J = J - m, 

r' := m - I n I ~ 0; 

g _ ex [x'(x' + 2m)(x' + r')(x' + m + 
~ [x'(2m)(x' + r')(m + In 1)]1/2 , 

(C3) 

Inl»)1/2, 

where we have neglected terms of order x'/(m + 
I n I) ~ x' / min J, and similarly for g +. Therefore, 
whenever x'/min J is negligible, 

go(x') ~E'H', 

g+(x') ~ [(x' + l)(r' + x' + 1)]1/2 E', (C4) 

g-<x') ~ [x'(r' + X')]l/2 E', 

just as in Eqs. (B3) except for the primes and an 
interchange of g + and g _. This interchange is 
compensated for at a later point when we replace 
W(x ± 1) by W(x' 'f 1) in Eq. (B4). Since x is linear 
in - J and x' is linear in + J, x ± 1 corresponds to 
x' 'f 1. Near J = min J, therefore, W(x') obeys Eq. 
(B4) with x, r, and H replaced by x', r',and H'. QED 

Applying the theory of Appendix B, we verify the 
statements of Sec. 5. In the forbidden region to the 
right (respectively,left) of point Bin Fig.4, W 
alternates in sign (is monotonic). 

Now let us consider the case of small min J. Here 
it turns out that the turning points J 0 are always 
near min J (or, in geometrical terms, the classical 
boundaries AB and Be in Fig. 4 are always near 
the upper edge J = max J) so that the formulas of 
Sec. 5 break down. Instead of these formulas we 
use an approximation valid for J < order JF2 
(1 :0; i :0; 4), and first derived by Racah and Ed­
monds. 12 As far as we can determine, they ob­
tained the approximation by manipulating the power 
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series expansion for W. It will be useful to rede­
rive the approximation using the difference equa­
tion techniques of the present paper to illustrate a 
technique which may work in cases where there is 
no power series. 

As a first step, we rewrite the g's of Appendix A 
in terms of the parameters m and n defined at Eq. 
(C1) and the angle tJ; opposite side J 5 in triangle 
J4J2J 5 : 

costJ; == (IJ5 12 -IJ4 12 -IJ2 12)j2IJ4 11 J 2 1, (C5) 

IJ i I2==Ji (J i +1), (C6) 

g+(J) = {[(J1 + J 2 + 1)2 - (J + 1)2] 

X [(J + 1)2 - m2][(J3 + J 4 + 1)2 - (J + 1)2] 

X [(J + 1)2 - n2]} 1/2j(J + 1), 

g-(J) =g+(J+1), 

go(J) = (2J+ 1){-41 J 2 11 J4!costJ; 

-[IJ2 12 -IJl I2 + IJI2] 

(J1 + J 2 + 1)(J3 + J4 + 1), which suggests that we 
should divide through by this constant: 

g+(J) 
(J1 + J 2 + 1)(J3 + J 4 + 1) 

"'" {[(J + 1)2 - m2][(J + 1)2 - n2]}112 
- (J + 1) 

g_(J) = g'-t(J - 1), 

go(J) 
( J 1 + J 2 + 1)( J 3 + J 4 + 1) 

S" (2J + 1) (- costJ; + £~2 ) (C8) 

In simplifying the coefficient of costJ;, we have used 
(J1 +Jz +1)(J3 +J4 +1)=(2J2 +m+1)(2J4 -n+1) 
S" 41 J2 11 J41. Next, since most recurrence relations 
found in the mathematical literature do not contain 
square roots, we get rid of the roots in Eq. (C8) by 
an appropriate change of dependep..t variable. Let 

W(J) == [(J + m)! (J - m) !j(J + n)! (J - n) !)1/2P(J). 
(C9) 

X [IJ4 12_IJ3 12 +IJI2]!IJI2}. (C7) Then the recurrence relation for P(J) is 

Next, we drop the (J + 1)2 in the first and third 
square brackets of g +, and neglect the 1 J 12 's in 
the numerator of go: 

(J1 + J 2 + 1)2 - (J + 1)2 

S" (J1 + Jz + 1)2, etc., 

IJ2 12 -IJ l I2 + IJI2 

S" (J 2 - J 1)( J 2 + J 1 + 1) + 1 J 1 2 

S" - m(J2 + J 1 + 1), etc. 

In the last line, where we neglected a term of order 
1 J 12 compared to a term of order J i' we used our 
assumption that J < order J i

l /2. At this point, 
most of the terms in the g's contain a factor 

P(J + 1)[(J + 1)2 - m2]!(J + 1) 

+ (2J + 1)(- costJ; + mnj I J 12)P(J) 

+ P(J - 1)[J2 - n2]!J S" 0, (C10) 

without any square roots. Comparing Eq. (C 10) to 
a standard recurrence relation for the Jacobi 
polynomial,13 we find that 

P(J) = (const)P5~~,n.m+n) (Cll) 

where the constant may be determined from boun­
dary conditions. At J - m = 0, the Jacobi poly­
nomial reduces to unity. Putting Eq. (Cll) into Eq. 
(C9), setting J - m = 0 on both sides, and evaluat­
ing W(J = min J) using Racah's sum,3 we find that 

x (J2 - J 4 + m + n + J 5 )! (- J 2 + J4 + J 5 ) !) 
(J2 - J4 + J 5 )! (- J 2 + J 4 - m - n + J 5 )! 

(Cll') 

S" (2J2t2m-l(2J4t2m-l(J2 + J 4 + J 5 + 1)m-n (J2 + J 4 - J 5 )m-n(J2 - J 4 + J 5 )m+n(-J2 +J4 +J5 )m+n 

S" (4J2J 4)-12-2m(1-costJ;)m-n(1 + costJ;)m+n. (C12) 

The phase of const, from Eq. (5. 6) with J i - J. = 
J 1 - J 2, is 1T(J1 + J 3 + J 5 ). Then J 

W(J) ~ (- 1)JtJ3+ J5(4J2J4)-1/2 

X [(J + m) !(J - m) !j(J + n) !(J - n)!] 1/2 

X 2- m (1 - costJ;) (m-n)/2 (1 + costJ;) (m+n)/2 

X p}~~n, m+n) (costJ;) 

or 

W(J) S" (- 1)J1+J3+J5 (4J2J
4
fl/ 2 d~n(tJ;), J« J~/2. , 

(C13) 

d J is the usual SU(2) rotation matrix element. 14 

Equation (C13) is the Racah-Edmonds result. 
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APPENDIX D: AN EXACT SOLUTION TO 
EQ. (4.2) 

If [f2/(f2 + f 1W == (g_/g+)n is a ratio of polyno­
mials for some choice of n, then there exists an 
exact solution to Eq. (4. 2). To obtain this solution, 
we eliminate the difference operators from Eq. 
(4.2), using definitions (1. 3). We get 

N eXt we raise both sides of this equation to an 
appropriate power n, in order to get rid of any 
roots present on the left. In the 6-J case, for ex­
ample, we square both sides (n == 2). Also, we 
make the changes of variable J - 1 == 2z, 
[R(2z)]n == Y(z). Equation (Dl) becomes 

(D2) 

Equation (D2) is a first-order difference equation 
in z with rational coefficients, a standard form 
solved in Sec. 11.2 of Milne-Thompson. 15 Suppose, 
for example, that 

where a and the r i are constants and where for 
later convenience "each parenthesis has been 
arranged so as to be positive for J values of physi­
cal interest. 'l;'hen the solution to Eq. (D2) is de­
termined up to a constant: 

[R(J - 1)]n == Y(z) 

azr[(J - r 1}/2]r[(r 4 - J + 2)/2] 
IX • (D4) 

r[(J - r 3)/2]r[(r2 - J + 2)/2] 

The argument of each gamma function in Eq. (D4) 
is positive because each parenthesis in Eq. (D3) is 
positive. Polynomials more complicated than Eq. 

(D3) can be handled by induction on this simple 
example. 

In the 6-J case the g± (J) are of the form 

g -(J) == ("~ (J - r i) . ~ (r
J
. - J) \ 1I2/J >=1 J~q+l '} , 

g+(J) = g_(J + 1). 
(D5) 

The exact solution for this case is 

[R(J -1)]2 == [rc~ J + t)/r(t J)]2 

x ~ r[(J - r i )/2] r[(rj - J + 1)/2]/ 
'J 

x r[(J - r i + 1)/2] r[(rj - J + 2)/2] 

(D6) 

(D7) 

The approximate result (D7) was obtained from 
Eq. (D6) using Stirlings' approximation, valid for J 
not too close to an r i or rj' and is the same as the 
approximate result obtained using another method 
at Eq. (4.5) (up to a constant of proportionality 
which can be ignored). P is the number of factors 
in the numerator of Eq. (D5). 

APPENDIX E: THE 3-J SYMBOL 

In this appendix let W(J) be a symmetrized 
Clebsch-Gordan coefficient, or 3-J symbol16 : 

W(J) == (-.: 1)Jl+J2+m(J1m1J2m2IJm) /(2J + 1)1/2 

(E1) 

Then Wobeys a recurrence relation of type (1. 5) 
with17 

{(J2 - m2)[ J2 - (J1 - J 2)2][ J 1 + J 2 + 1)2 - J2]) 1/2 
g-(J)== 2J ' 

(- m[ J(J + 1) + J 2(J2 .+ 1) - J 1(J1 + 1)] ) 
g+(J) ==g_(J + 1), go(J) == (2J + 1) \ 2J(J + 1) + m 2 . (E2) 

The geometric interpretation of these g's is re­
markably similar to the geometrical interpreta­
tion of the 6-J g's. In Fig. 3 relabel 

(E3) 

The replacement of J 4 by a vector of length m 
means that the old J 4 axis becomes the new z axis. 
The old J 3 and J 5 in Fig. 3 have no particular 
physical significance after the relabeling; however, 
the length of J 3 must be such that the projection of 
J upon the new z axis (old J 4) is m (Le., J 3 and old 
J 4 must form a right angle), and the length of J 5 
must be such that the projection of J 2 upon the 
new z axis is m 2 • 

Hence there is a tetrahedron in the 3-J case as 
well as in the 6-J case! In terms of the geometry 
of this tetrahedron, we have 

g + ~ g _ ~. JJ2 sin1f; 2 sin1f; 4 (E4) 

go ~ 2JJ2 [COS1f;24 - COS1f;2 COS1f; 4] (E5) 

== 2JJ2 silllh sin1f; 4 cos~. (E6) 

These formulas are remarkably similar to the 6-J 
ones, Eqs. (3.10) and (3.11). The only significant 
difference is in the direction of simplicity: Since 
the old "4" direction is the new z direction, the 
formulas for COS1f;24 and cos1f; 4 are simpler: 
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cos1Jl 24 = m21 J 2J 

cos1Jl 4 = ml J. 

(E7) 

(E8) 

The mean-square value of W in the classically 
allowed region is again proportional to V-I, al­
though with a different constant of proportionality 5 : 

W2 = 1 m 1/121TV, or zero. (E9) 

A small-J analysis carried out according to the 
methods of Appendix C again gives a W propor­
tional to a rotation matrix: 

W ~ (_1)J+J 1+m2 d; -J .m(1JI
24

)/(2J + 1)112, 
2 I 

J < order Ji/2. (E10) 

This result was first derived by Brussard and 
Tolhoek. 18 

Likewise, the discussion of 6-J turning points in 
Secs.4 and 5 may be repeated nearly verbatim for 
the 3 -J symbol. There are only two minor changes, 

1 For a WKBJ bibliography see Leonard 1. Schiff, Quanlum 
Mechanics (McGraw-Hill,New York, 1955, 1968), 2nd ed., 
p. 184, 3rd ed., p. 268. 

2 Eugene P. Wigner, Group Tilef)ry (Academic, New York, 1959); 
A. R. Edmonds, Angular Momenlum in Quanillm Mechanic s 
(Princeton U. P., Princeton, N.J., 1960). 

3 For Racah's sum for the 6-J symbol see Edmonds, Ref. 2, 
p.99. 

4 Two extensive computer complications of 6-J symbols are 
M. Rotenberg,R. Bivens, N. Metropolis, and J. K. Wooten, Jr., 
3-J and 6-./ Symlwls (Technology, Cambridge, Mass., 1959), 
and TaMes uf Racall CoeJficienls, edited by Ishidzu Takehiko 
(Pan-Pacific, Tokyo, 1960). 

5 For a geometrical calculation of A in both the 3-J and the 
6-J cases, see Wigner, Ref. 2, Eqs. (27.6) and (27.12), pp. 
353ff. 

6 D. E.Neville, Phys.Rev.160, 1375 (1967); 163,1582 (1967). 
7 W. Magnus and F. Oberhettinger, Formulas and Theorems 

for (he Fum'lions of Ma(hemalical Physics (Chelsea,New 
York, 1954). Debye's series are on p. 23. 

8 For a deri vation of the Biedenharn - Elliott identity, see 

both connected with normalization. Firstly, the 
magnitude of the 3-J W, Eq. (E9), is larger than the 
magnitude of the 6-J W, Eq. (3. 7), by a factor of 
(21 m \)1/2; hence Eq. (5. 5) must be multiplied by 
(21 m 1)1/2 before it is correct for the 3-J symbol. 
Secondly, in place of Eqs. (5. 6) we must use 

phase of W (J = max J) = 1T(J1 - J 2 + m 1 + m 2 ) 

(Ell) 
and, if min J = J 2 - J 1 , 

phase of W (J = J 2 - J 1 ) = 1T(2J1 - m 2 + J2 ) 

(E12) 

or,if min J = J 1 - J 2 , 

If we then repeat the discussion following Eqs. 
(5.6) but use Eqs. (Ell)-(E13) in place of Eqs. 
(5.6),we get a different phase 6 in Eq.(5.5). 

Edmonds, Ref. 2, p. 96-97. 
9 6-J symbols with one argument unity are quoted by Edmonds, 

Ref. 2, Table 5, p. 130. 
10 Chester Snow, Hypel'l(eometric and Legendre Functions, 

N .B.S, Applied Math. Series # 19 (U .S. Govt. Printing Office, 
Washington, D.C., 1952), p. 32. Equation (B7) follows from 
Eq, (12)(with (l replaced by (l - 1) plus Eq. (12) (with 'Y re­
placed by 'Y + 1) plus Eq, (15) (with (l and f3 interchanged). 

11 Magnus and Oberhettinger, Ref. 7 ,po 9, third line. 
12 Edmonds,Ref.2,Eq.(A2.2),p.122. Racah derived Eq.(C13) 

for the special case m = n = O. 
13 Gabor Szego,Orlhogonal Polynomials, AMS Colloquium Pub­

lications, Vol. 23 (Am. Math. Soc., Providence, R.I., 1939), p. 71. 
l1 Edmonds,Ref.2,p.58. 
l5 L. M, Milne-Thompson, Calculus of Finite Differences (Mac­

millan, London, 1933), Sec.H. 2. 
16 Edmonds,Ref.2,Eq.(3. 7.3),p.46. 
17 E. U. Condon and G. H.Shortley, Theory of A/omic SPectra 

(Cambridge U.P., New York, 1959), p. 74, Eq. (4). 
l8 P. Brussaard and J. H. Tolhoek, Physica,23, 955 (1957). See 

also Edmonds, Ref. 2, Eq. (A2.1), p.122. 
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A new, and computationally simple, method is given for obtaining the characters of all the inequivalent 
irreducible vector representations of a finite group. The method was applied to determine the charac­
ters of the irreducible vector and ray representations of the four-dimensional cubic crystal point 
groups: group 47 and group 45. These groups are of order 384 and 1152, respectively, and contain the 
cubic point group in three dimensions 0h[3] as a subgroup. Tables are given of the irreducible repre­
sentations of 0h subduced by the irreducible representations of group 47 and group 45. These tables 
may be useful in testing the conjecture that accidental degeneracy in problems in solid state physics 
in three dimensions reflects a higher symmetry in four dimensions. 

1. INTRODUCTION 

Character tables of the inequivalent irreducible 
vector representations, and of the p-inequivalent 
irreducible ray representations, of finite groups 
have been widely used in physics. For example, 
such tables for the crystallographic point groups 
in three dimensions are indispensable in problems 
in solid state physics. 

The present paper is concerned with such charac­
ter tables for certain crystallographic cubic point 
groups in four dimensions. This study was moti­
vated by the conjecture by one of us (J.B.) that 
accidental degeneracy in problems in solid state 
physics (in three dimensions) is related to an 
underlying four-dimensional symmetry group: 
namely, a crystallographic point subgroup of the 
group 0(4). We will not discuss this conjecture 
extensively in this paper but restrict ourselves to 
the mathematical, and computational aspects of 
obtaining the character tables needed for further 
study of this problem. 

In principle, given the defining generators and 
relations for any finite group, the character tables 
can be found straightforwardly by solving a set of 
bilinear equations. I But when the order of the 
group is large with correspondingly large number 
of generators and relations, one must also be con­
cerned with the practicality of a computational 
method used to obtain the characters. For this 
reason a systematic and practical method of ob­
taining characters is given in Sec. 2. To our know­
ledge, this method is new. 

In Sec. 3 we apply this method to two cubic crys­
tal point groups in four dimensions. These groups 
are known as the groups 45 and 47 in [4J. 2 The 
group 45 is a subgroup of order 1152 of the ortho­
gonal group 0(4). The groups 47 is a subgroup of 
index 3 of 45. The familiar cubic group in 3 
dimensions: 0h (3) is a subgroup of index 8 in 47. 
Thus, we give in Sec. 3 the complete set of charac­
ter tables for groups 45 and 47 and also in Sec. 4 
the subduction tables which give the connection 
with the irreducible representations of 0h[3J. It 
is the latter table which will ultimately be of value 
in testing the conjecture on the relation to acci­
dental degeneracy. The concluding Sec. 5 gives a 
brief discussion of our results. 

2. METHOD OF OBTAINING CHARACTERS OF 
VECTOR IRREDUCffiLE REPRESENTATIONS 

All methods of obtaining the full set of characters 
of a finite group start from the equations which 
relate the characters to certain structure con­
stants of the group. 

Let G be a finite group of order g. Let the class 
Ci of G be of order Yi , and the total number of 
classes be r. Let X~ be the character of class Cil 
in the /lth irreducible vector representation r I' of 
G; let dl' be the dimension of rl" 
There are then four basic equations to be used.1 ,3 

The positive integers dl' satisfy 

r 

I; d~ =g. 
wI 

(2.1) 

The characters Xt satisfy the orthonormality re­
lations 

r 

" 11 ~* '" LI riXiXj = gUij 
wI 

(2.2) 

and 

(2.3) 

Finally, we have the bilinear equations 
r 

rirjxhj = q, I; flij.1hxl)., 
k=l 

i,j, = 1, ... ,r. (2.4) 

In (2.4) the ~j,k are the class multiplication coef­
ficients, which have the symmetry properties 

hij,k = hji,k 

and also obey the sum rule 
W 
r r 

6 hij,khkl,m = I; hjl.khik,m 
k=1 k=l 

and 

(2.5) 

(2.6) 

(2.7) 

In (2.7) we have that the primed letters (e.g., i', 
j', ... ) correspond to the index of the inverse 
class which contains the inverse elements to 
those in (i,j, ... ). Evidently rj = rj" 
For finite groups of low order, such as the crys­
tal point groups in [3J, one can proceed in an ele­
mentary fashion: first finding the positive integer 

2454 
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d from (2.1), then the x~ from (2.2)-(2.4). 
Another method, introduced by Burnside, 4 involves 
finding eigenvalues and eigenvectors of r differ­
ent matrices. 

But we have used a method which seems simpler 
and more facile computationally and proceeds 
directly from (2.2)-(2.4), thereby automatically 
ensuring that the orthonormality relations are 
satisfied. Define an r X r matrix U by 

(2.8) 

From (2. 2) and (2. 3) we see that U is unitary. 
Then (2.4) becomes 

y 

,jgr/j UIl;Ullj ::: d ll ~ hij.k..;r;. U"k' (2.9) 

Multiply both sides of (2.9) by U:/(djl.Jr;) and sum 
onj from 1 to r. We have 

(2.10) 

A. Dimensionalities of Representations 

We first show the use of (2.10) to determine the 
dimensionalities d ll of the irreducible vector rep­
resentations. Let Yi with i =:0 1, ... ,r be a set of 
indeterminates, and multiply both sides of (2. 10) 
by Yi and sum over i from 1 to r: 

(Y (Fr;/d,,) UlliYJ o,,~ 

::: y ~ Ullk(.yhij.kYi,jr /rj )U~*j' (2.11) 

Define the r numbers AI' and the matrix Y by 

y 

All == ~(vgr/d")UlliYi 
t =1 

(2.12) 

and 
(2.13) 

Then (2.11) becomes 

(2.14) 

where we used the unitary property of U. Also 
from (2. 14), 

(2. 15) 

Hence the unitary matrix U diagonalizes the mat­
rix Y, and the column vector (U-l)jl' (with jJ. fixed 
andj ::: 1, ... , r) is an eigenvector of Y associ­
ated with eigenvalue AI" With a particular choice 
of the Yp the problem can be completely solved. 

Now in (2.10), let jJ. = IJ and sum over IJ. from 
1, ... ,r. Then 

Then multiply both sides of (2.16) by(l/fr;)U;i and 
sum on i. Then we have 

(2.17) 

or ~ r 
g/d~ ==fj(!iY;/d w) Uwi (,E(I/ri)hik,~' (2. 18) 

But now compare (2.18) and (2.12). If we choose 

(2. 19) 

then 
A ==g/d2 

" II 
(2.20) 

and 

(2.21) 

From (2.21), using (2.6) and (2.7), we easily prove 
that 

Y kj == Yjk" (2.22) 

Then Y is a real symmetric matrix. Further, it 
follows from (2.20) that the eigenvalues of Yare 
trivially related to the dimensionalities dl' of the 
irreducible representations of the group. 

Thus the first stage of the program is easily con­
cluded. From the basic structure constants of 
the group (the r i and hi j.1), the matrix Y can be 
constructed. The matrix Y is r x r and its real 
eigenvalues Ail' and its eigenvectors can be found 
by using a standard computer routine. 5 

B. Characters of Representations 

A standard eigenvector-eigenvalue routine can be 
used to diagonalize the matrix Y. Such a routine 
will produce an orthogonal matrix V, which diago­
nalizes Y, 

VYV-l = X, (2. 23) 

or, USing the symmetry and reality of Y, 

(2.24) 

where we use (2.20). But we need to examine now 
the relation between the matrix V given by the 
computer and the desired matrix U of (2.8), whose 
elements are the characters. 

If a given eigenvalue A~ =g/d~ of Y occurs once, 
the corresponding eigenvector V;'k is unique up to 
a sign. Then this eigenvector v;,k(k = 1, ... ,r) 
is related to the corresponding U"i, by 

(U,,11 U,,2"'" U"y) == ± (V"v ... , V"r), (2.25) 



                                                                                                                                    

2456 L. C. C HEN, J. L. B I R MAN 

and the sign of (2.25) can be found by taking 

(2.26) 

This concludes the analysis for the cases where 
only one irreducible vector representation exists 
of a given dimension duo 

Now assume that, for certain /-l, the eigenvalue 
(g/d~) is multiple: 

d 1 == d 2 = ... = dJ.l = ... d". (2.27) 

That is, there are n irreducible vector represen­
tations of the same dimension diJ' In this case, the 
eigenvectors ~k are not automatically the de­
sired UJ.lk' To tind the UJ.lk' we must make a unitary 
transformation of the ViJk: 

n 

Ul'k == L; aiJI/VII'" k = 1, ... ,r, /J = 1, ... , n. (2.28) 
11=1 

To find the elements a llll , we need to substitute 
(2.28) into (2.9). We have 

..jgrjrj(t aiJY)(t aj1Wv) 
v=1 9 w=l ~ 

= d
ll 

£; hii•k rr;.(t aiJ)' v) (2.29) 
k=l y=1 1 

or, if we multiply both sides of (2.29) by 

(l!-./grirj )V:i VB*j 

and sum over i and j, we have 

with 

n 

ap'aaiJB == dl' 6 f c4Jya l'Y 
)'=1 

- '\~ §;k h V* V* V fa = LI -- ii,k ai Bj yk' 
By i.i.k=l grirj 

(2.30) 

(2.31) 

(2. 32) 

The coefficients fa By are real and are given, since 
the diagonalization of Y has produced the real 
eigenvectors V ai . In the work reported here, Eqs. 
(2.31) were solved directly by inspection. Since 
the subspace involved is relatively small (n, the 
multipliCity of eigenvalue AI' much smaller than r, 
the number of classes of the group), this is a 
straightforward task. After this work was com­
pleted, we realized that a simple application of 
the same kind of analysis used earlier could be 
applied also to Eqs. (2. 31). This is described in 
the Appendix. 

In summary, the method givlin here reduces the 
problem of determining the characters of the 
irreducible vector representations of a finite 
group to that of a diagonalization of a matrix, 
which is easily constructed from known structure 
constants of the group. Since the p-inequivalent 
irreducible ray representations of a given group 
are obtainable from the irreducible vector repre­
sentations of a certain minimum. covering group 

(or "representation group"), our procedure suf­
fices to find ray representations once we find the 
representation group for the given group. But in 
principle this is a solved problem. 

3. lRREDUCmLE REPRESENTATIONS OF 
GROUPS 45 AND 47 IN (4) 

Hurley2,6 has derived the 227 crystallographic 
point groups in four-dimensional Euclidean space 
[4 J, basing his work on Goursat' s 7 analysis of the 
orthogonal groups in [4 J. The largest of these 
groups is of order 1152. and is labeled Group 
45, following Hurley. It is the symmetry group of 
the regular 24-cell (134). The symmetry group of 
the hypercubic in [4) is of order 384, and is called 
Group 47; it is isomorphic to a subgroup of Group 
45. 

In this section, we give the characters of the in­
equivalent irreducible vector representations of 
these two groups as obtained by the methods dis­
cussed in Sec. 2. Also we give all the p -inequiva­
lent irreducible ray representations of these 
groups, found from the irreducible vector repre­
sentations of the representation (covering) group. 

A. Group 47: Hypercubic 

A set of generators and relations for the group 47 
is given in Table I, and correspondence with 
Goursat's substitutions are given in Table IT. 
Column 3 of the latter table gives the 4 x 4 mat­
rix associated with each substitution, and column 
4 the invariants X(A), o-(A), and d(A) for every 
orthogonal matrix A in [4J. The invariants are 
defined by the characteristic equation of A: 

det(A/- A) == A 4 - X(A)A 3 + 0-(A)A2 

- d(A)x(A)A + d(A) == 0 (3.1) 

The last column gives Hurley's letters which 
correspond to the 24 symmetry operations dis­
tinguished by different values of X' 0-, or d. 

Mackay and PawleyS have given the Bravais lat­
tices in (4J. For Group 47, the invariant metric 
tensor gij is 

(

at 0 0 0) 
o a~ 0 0 

gij == 0 0 a~ 0 ' 

o 0 0 at 

(3.2) 

where the unit cell edges in terms of orthogonal 
unit vectors (f,j, k, i) are aI' i, al,j, aI' k, a1, l. 
The group 47 has 20 conjugacy classes. All are 
ambivalent so that the vector characters of this 
group are all real. In Table ITI, we give the 
character table for inequivalent irreducible vec­
tor representations of 47. In the table, we give a 
typical element of each class, the order of the 
class, and the full set of characters for the 20 
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irreducible representations r(j),j = 1, ... , 20. 
All are obtained by the method of Sec. 2. 

To obtain all the P -inequivalent, irreducible ray 
representations of a group G, we need to construct 
the representation group G* and find the irredu­
cible vector representations of the latter. Here 
G* has the property 

G*/M = G, (3.3) 

where M is in the center of G*. We modified the 
procedures described by Doring9 and Hamer­
mesh3 to find the minimum group G* or 47*. 
Details are given in the thesis of Chen. IO Defin­
ing relations of the group 47* are given in Table 
IV. The constants ct, {3, y in that table can have 
values ± 1; different choices give p-inequivalent 
factor systems for the irreducible ray represen­
tations of 47. Finally, in Tables V-XI, the com­
plete set of P -inequivalent irreducible ray repre­
sentations of 47 are given. 

B. Group 45 

Generators and defining relations of Group 45 are 
given in Table I. Compared with Group 47, this 
group has an additional generator K; the corres­
ponding substitution and the 4 x 4 matrix are 
given in Table II. The metric for this group is 

with cell edg~s i PI (- f + j + k j- l),~ 
t a l (z- j - k -t t),j a l (l + j + k - l), and 
t a l (- f - j + k + l). 
All 25 classes of Group 45 are ambivalent. The 
vector characters of Group 45 are listed in 
Table XII. 

The defining relations for the representation 
Group 45* are given in Table XIII. The constants 
ct, y can take values ±. Using the method of Sec. 
2, we found the characters of the irreducible vec­
tor representations of Group 45*, and thence the 
characters of the p-inequivalent irreducible ray 
representations of Group 45. These are given in 
Tables XIV-XVI. 

4. 0 .. AS A SUBGROUP OF GROUP 47 AND 
GROUP 45 

From Table I, we know that the five generators 
T,R, S, W, and Y form a subgroup H of both Group 
47 and Group 45. The group H is defined by the 
following: 

T2 = R2 = S3 = W4 = y2 = I, 
RT = TR, ST = TRS, SR = TS, W2 = T, 

TABLE I. Defining relations of Group 47 and Group 45. 

Group 47: T2 = R2 = S3 = I, 
RT = TR, ST = TRS. 
W2 = T, WR = TRW, 
1'2=1, A2=B2=1', 
I'T = TI', I'R =RI', 
I'W = WI', I'A = AI', 
AT=TA, AR=I'RA, 
AW = WA, BT = I'TB, 
BS = SAB, BW = I'WAB, 
y2 = I, YT = TY, 
YS = SY, YW = WY, 

SR = TS, 
WS = TS2W, 

I'S=SI', 
I'B = BI', 
AS =I'SA, 
BR =RB, 
BA = I'AB, 
YR =RY, 
YI' = I'Y. 

Group 45 = Group 47 + (Group 47)K + (Group 47)K2 
K3 = I, KT = I'TBK, KR = I'RABK, 
KS= SK, KW= WBK2, KJ' =I'K, 
KA = I'ABK, KB = I'AK, KY = SYK2. 

TABLE II. Generators of Group 47 and Group 45. 

Gen-
era- Goursat's 
tor substitution Matrix 

Hurley's 
(X, a, d) letter 

I' 

T 

R 

s 

W 

A 

B 

Y 

K 
[

t . ~+1l 
1), ,; 1), Z ~-iJ 

[! 1 ! ~ 
[-~ -~ g o~ 

o 0 -1 0 
o 0 0-1 

~D _~ g O~ 
o 0 -1 0 
DOD 1 

~~ _~ g O~ 
o 0 1 0 
o 0 0-1 

[~ g g_D~ 
0-1 0 0 • 
001 0 

[~ .g _~ O~ 
o 1 0 0 
ODD 1 

[! o O-~ 0-1 0 
1 0 0 
o 0 0 

[ gg~_o~ 
-1 0 0 0 

o 1 0 0 

n 1 ! ~ 
l[=~ _~ =~ -1~ 
2 1 1 -1 1 

1 -1 -1-1 

(4,6,1) I 

(- 4, 6, 1) I' 

(0,-2,1) E 

(0,-2,1) E 

(1,0,1) K 

(2,2,1) R 

(0,2,1) D 

(0,2,1) D 

(2,0,-1) T 

(-2,3,1) S' 

WR = TRW, WS = TS2W, YT = TY, YR = RY, 

Y S = SY, YW = WY. 

If we associate W with Av T with A¥, S with A 2 , 

R with (A~I)2, and Y with I', then it can easily 
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TABLE m. Vector Characters of Group 47. 

Class 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 

Typical 
Element 

r(ll 
r(2) 

r(3) 

r(4) 

r(S) 

r(6) 

r(7l 
r(S) 

r(9) 

r(lO) 

r(ll) 

r(12) 

r(13) 

r(14) 

r(lS) 

r(16) 

r(17) 

r(lS) 

r(19) 

r(20) 

1 
1 
1 
1 
2 

2 
3 
3 
3 
3 

4 
4 
4 
4 
6 

6 
6 
6 
8 
8 

S SY W Y RWY R RW A RA SWA 

32 32 12 4 12 6 24 12 12. 48 

1 1 1 1 1 
1 1 -1 1-1 
1 -1 1 -1 -1 
1 -1 -1 -1 1 

-1 1 0 -2 0 

-1 -1 0 2 0 
o 0 1 3 1 
o 0 -1 3-1 
o 0 -1 -3 1 
o 0 1 -3 -1 

1 1 -2 -2 -2 
1 -1 -2 2 2 
1 -1 2 2-2 
1 1 2 -2 2 
00200 

o 0 -2 0 0 
00002 
o 0 0 0-2 

-1 1 0 4 0 
-1 -1 0 -4 0 

1 1 1 1 1 
1 -1 1 1-1 
1 1 1 1 1 
1 -1 1 1-1 
2 0 2 2 0 

2 0 2 2 0 
3 1 -1 -1 -1 
3 -1 -1 -1 1 
3 -1 -1 -1 1 
3 1 -1 -1 -1 

o 0 
o 0 
o 0 
o 0 

-2 -2 

o 0 
o 0 
o 0 
o 0 
2 -2 

-2 2 2-2 
-2 
-2 

o 
o 

o -2 2 
o -2 2 
000 
000 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

WY YA SWYA 

24 24 48 

1 1 1 
-1 1-1 
-1 -1 -1 

1 -1 1 
o -2 0 

o 2 0 
1 -1 -1 

-1 -1 1 
1 1-1 

-1 1 1 

o 0 
() 0 
o 0 
o 0 
o 0 

o 0 
-2 0 

2 0 
o 0 
o 0 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

I' I'S 

32 

1 1 
1 1 
1 1 
1 1 
2 -1 

2 -1 
3 0 
3 0 
3 0 
3 0 

I'SY WA 

32 12 

1 1 
1 -1 

-1 1 
-1 -1 

1 0 

-1 0 
o 1 
o -1 
o -1 
o 1 

I'Y 

4 

1 
1 

-1 
-1 
-2 

2 
3 
3 

-3 
-3 

I'RWY 

12 

1 
-1 
-1 

1 
o 
o 
1 

-1 
1 

-1 

-4 -1 -1 2 2 2 
-4 -1 1 
-4 -1 1 
--4 -1 -1 
600 

600 
600 
600 

-8 1 -1 
-8 1 1 

2 -2 -2 
-2 -2 2 
-2 2-2 
200 

-2 0 0 
002 
o 0 -2 
o --4 0 
040 

TABLE IV. Group 47*: Generators and defining relations. TABLE VI. Ray characters of Group 47 belonging to the factor 
system 0' =y = 1,{3 = ·1. For classes 4,6,9,10,13,18,20,the 
ray characters = O. 0'2 = {32 = y2 = 1 

T2 = Cil 
R2 = 0'1 
S3 = I 
W2=T 
A2 = {31' 

y2 =1 

RT = CiTR 
ST = TRS 
WR = TRW 
AT = TA 
AS = I'SB 
BA = {3I'AB 
BR =RB 
BW = i3l'WAB 
I'T = TI' 
I'S = SI' 
I'A = AI' 

YT = TY 
YS =SY 
VI' = O'I'Y 
YB = O'I'RBY 

SR = TS 
WS = CiTS2W 
AR = I'RA 
AW={3WA 
BT = I'TB 
BS = SAB 

I'R = RI' 
I'W= WI' 
I'B = BI' 

YR =RY 
YW = yWY 
YA=I'TAY 

TABLE V. Ray characters of Group 47 belonging to the factor 
system 0' = {3 = 1,y = -1. For classes 4,5,6,8,12,13,18,19. 
20, the ray characters = O. 

Class 1. 

2 
2 
2 
6 

6 
6 
6 

6 
8 
8 
8 

2. 3. 

2 0 
-1 ij3 
-1 -ij3 

o 0 

o 0 
o 0 
o 0 

o 0 
2 0 

-1 i..J3 
-1 -i..J3 

7. 9. 10. 11. 14. 

2 2 2 o 0 
2 2 2 o 0 
2 2 2 o 0 
6 -2 -2 o 0 

-2 2 -2 2 0 
-2 2 -2 -2 0 
-2 -2 2 0 i2 

15. 16. 

2 2 
2 -1 
2 -1 
6 0 

6 0 
6 0 
6 0 

17. 

o 
i..J3 

-i..J3 
o 
o 
o 
o 

-2 -2 2 0 -i2 6 0 0 
o 0 o 0 0 -8 -2 0 
o 0 o 0 0 -8 l-i..J3 
o 0 o 0 0 -8 1 i..J3 

be shown that H is isomorphic to the cubic sym­
metry group Ok in [3]. The group Ok can be de­
fined by the following relations: 

Class 1. 2. 3. 5. 7. 8. 11. 12. 14. 15. 16. 17. 19. 

2 -1 1-2 
2 -1 1-2 
2 -1 -1 2 
2 -1 -1 2 

2 
2 
2 
2 

o iff 0 
o -iff 0 
o iff 0 
o -iff 0 

4 
4 
4 
4 
4 

1 -2 
-1 2 
-1 2 

1 -2 
1 4 

o 2 
o -2 
o 2 
o -2 
4 0 

4 1 -1 -4 4 
8 -1 1 4 0 
8 -1 -1 --4 0 

o 
o 
o 
o 12 0 0 0--4 

o 2 
'0 2 
o -2 
o -2 
o 0 

o 
o 
o 
o 

o 
o 
o 
o 

-iff 2 -1 1-2 
iff 2 -1 1-2 
iff 2 -1 -1 2 

-iff 2 -1 -1 2 

o --4 -1 -1 2 
o --4 -1 1-2 
o --4 -1 1-2 
o --4 -1 -1 2 
o 4 1 1 4 

o 4 
o -8 
o -8 
o 12 

1 -1 -4 
1 -1 --4 
1 1 4 
000 

TABLE VII. Ray characters of Group 47 belonging to the factor 
system 0' = 1,{3 = y = -1. For classes 4,5,6,8,9,10,12,18,19, 
20, the ray characters = O. 

Class 1. 

4 
4 
4 
6 
6 

6 
6 
8 
8 
8 

2. 3. 

1 ij3 
1 -ij3 

-2 0 
o 0 
o 0 

o 0 
o 0 
2 0 

-1 -ij3 
-1 ij3 

7. 

4 
4 
4 

-2 
-2 

11. 

o 
o 
o 

iff 
iff 

-2 -iff 
-2 -iff 

o 0 
o 0 
o 0 

13. 14. 

o 0 
o 0 
o 0 

-i2 .f1: 
i2 ---J2 

15. 16. 17. 

4 1 ij3 
4 1-ij3 
4 -2 0 
6 0 0 
6 0 0 

i2 ff 6 0 o 
o 
o 

-i2 
o 
o 
o 

---j2 6 0 
o -8 -2 
o -8 1 
o -8 1 

;,[3 
-ij3 

The order of Ok is 48, its number of classes is 10. 

We can write Group 47 and Group 45 in terms of 
Ok: 

Group 47 = Ok + 0hA + 0kB + 0hAB + 0hI' 

+ OkrA + 0hI'B + 0kI'AB, 

Group 45 = Group 47 + (Group 47)K+ (Group 47)K2, 
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TABLE VIII. Ray characters of Group 47 belonging to the fac- TABLE XIII. Defining relations of Group 45*. g = 1152, 
tor system III = - 1,/3 = y = 1. Ray characters = 0, for all other r = 25, g* = 4608, y* = 59. 

classes. llI 2I = I, T2 = R2 = llII, 53 = WB = I, 
Class 1. 2. 4. 9. 11. III = ±1 RT = llITR, 5T = TR5, 

----- - ---- --,- --- ---- 5R = T5, W 2= T, 
4 -2 -212 2 -./2 WR = TRW, W5 = llIT52W, 
4 -2 2;'2 2 .fi A2 = B2 = I', /,2 = y2 = I, 
8 2 0 4 0 BA = I'AB. AT = TA, 

12 0 2./2 --2 -./2 AR = I'RA, AS = [,5B, 
12 0 -2/2 -2 ./2 AW = WA. BT = I'TB, 

BR =RB, B5 = 5AB, 
BW = I'WAB, 

TABLE IX. Ray characters of Group 47 belonging to the fac- I'T=TI', I'R = RI', 

tor system III = y = - 1. {3 = 1. Ray characters = O. for all other 1'5=51'; I'W = WI', 

classes. l'A=Al', I'B = BI', 
y21 = I YT = TY, YR =RY, 

Class l. 2. 9. 11. 18. y = ±1 Y5 = SY, YW = yWY, 
-~~ ------- YA=I'TAY, YB = I'RBY, 

4 -2 2 -./2 -2-/2 
4 -2 2 /2 2/2 

YI' = llIl'Y, 
K3 =1, 

8 2 4 0 ~ KT = I'TBK, KR = I'RABK, 
12 0 -2 --Pi 2/2 K5 = SK, KW = WBK2, 
12 0 -2 ./2 -2./2 KA = I'ABK, KB = I'AK, 

KY = SYK2, KJ' = I'K. 

TABLE X. Ray characters of Group 47 belonging to the factor 
system III = {3 = -1, y = 1. Ray characters = 0, for all other where the definitions of the generators A, B, J', and 
classes. 

K are given in Table I. 
Class 1. 2. 11. 
---------<---- ---- ----.-,----- The irreducible vector representations of Group 

8 2 i2 47 and Group 45 will subduce representations of 
8 2 -i2 

16 -2 0 0;" which are listed in Tables xvn and XVITI. 

5. SUMMARY AND OBSERVATIONS 
TABLE XI. Ray characters of Group 47 belonging to the factor The method given here has been found to be 
system III = (3 = y = -1,: Ray characters = 0, for all other 
classes. straightforward and easily used with available 

Class 1. 2. 11. 
computer routines for the diagonalization of real 

- -. -- ---- - ---- symmetric matrices. It has the advantage of 
8 2 i2 requiring only a single diagonalization of an r x r 
8 2 -i2 matrix: The remainder of the work can then be 

16 -2 0 done by solving (2.31) by inspection or by a fur-

TABLE XII. Vector Characters of Group 45. 

Class 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. -... 23. 24. 25. 

Typical 
RK R Element I K 5 5K 5Y WYK W Y RWY A 5WA RW WY YA I' I'K 1'5 I'5K 1'5Y [,WYK I'W I'Y I'RWY 

ri 16 32 32 96 96 36 12 12 12 144 96 18 72 72 72 16 32 32 96 96 36 12 12 

r(l) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
r(2) 1 1 1 1 -1 -1 1 -1 -1 1 1 1 1 1 -1 -1 1 1 1 1 -1 -1 1 -1 -1 
r(3) 1 1 1 1 -1 1 -1 -1 1 1 -1 1 1 -1 1 -1 1 1 1 1 -1 1 -1 -1 1 
r(4) 1 1 1 1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 1 1 1 1 -1 -1 1 -1 
r(5) 2 -1 2 -1 0 -1 0 0 2 2 0 -1 2 0 2 0 2 -1 2 -1 0 -1 0 0 2 

r(6) 2 -1 2 -1 0 1 0 0 -2 2 0 -1 2 0 -2 0 2 -1 2 -1 0 1 0 0 -2 
r(7) 2 -1 -1 2 -1 0 0 2 0 2 0 -1 2 0 0 2 2 -1 -1 2 -1 0 0 2 0 
r(B) 2 -1 -1 2 1 0 0 -2 0 2 0 -1 2 0 0 -2 2 -1 -1 2 1 0 0 -2 0 
r(9) 4 1 -2 -2 0 0 0 0 0 4 0 1 4 0 0 0 4 1 -2 -2 0 0 0 0 0 
r(lO) 4 -2 1 1 -1 1 -2 2 2 0 0 0 0 0 0 0 -4 2 -1 -1 1 -1 2 -2 -2 

r(ll) 4 -2 1 1 1 -1 -2 -2 -2 0 0 0 0 0 0 0 -4 2 -1 -1 -1 1 2 2 2 
r(12) 4 -2 1 1 -1 -1 2 2 -2 0 0 0 0 0 0 0 -4 2 -1 -1 1 1 -2 -2 2 
r(13) 4 -2 1 1 1 1 2 -2 2 0 0 0 0 0 0 0 -4 2 -1 -1 -1 -1 -2 2 -2 
r(14) 6 3 0 0 0 0 2 0 0 2 0 -1 -2 -2 0 0 6 3 0 0 0 0 2 0 0 
r(15) 6 3 0 0 0 0 -2 0 0 2 0 -1 -2 2 0 0 6 3 0 0 0 0 -2 0 0 
r(16) 8 2 2 -1 0 1 0 0 -4 0 0 0 0 0 0 0 ~ -2 -2 1 0 -1 0 0 4 
r(17) 8 2 2 -1 0 -1 0 0 4 0 0 0 0 0 0 0 ~ -2 -2 1 0 1 0 0 -4 
r(18) 8 2 -1 2 '1 0 0 4 0 0 0 0 0 0 0 0 ~ -2 1 -2 -1 0 0 --4 0 
r(19) 8 2 -1 2 -1 0 0 -4 0 0 0 0 0 0 0 0 -8 -2 1 -2 1 0 0 4 0 
r(20) 9 0 0 0 0 0 1 3 3 -3 -1 0 1 1 -1 -1 9 0 0 0 0 0 1 3 3 

r(21) 9 0 0 0 0 0 1 -3 -3 -3 -1 0 1 1 1 1 9 0 0 0 0 0 1 -3 -3 
r(22) 9 0 0 0 0 0 -1 3 -3 -3 1 0 1 -1 1 -1 9 0 0 0 0 0 -1 3 -3 
r(23) 9 0 0 0 0 0 -1 -3 3 -3 1 0 1 -1 -1 1 9 0 0 0 0 0 -1 -3 3 
r(24) 12 -3 0 0 0 0 0 0 0 4 0 1 --4 0 0 0 12 -3 0 0 0 0 0 0 0 
r(25) 16 -2 -2 -2 0 0 0 0 0 0 0 0 0 0 0 0 -16 2 2 2 0 0 0 0 0 
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TABLE XIV. Ray characters of Group 45 belonging to the factor system Ci = l,y = -1. Classes 7,8,9,14,15,16,23,24,25 pro­
vide zero ray characters only. 

Class 1. 2. 3. 4. 5. 6. 10. 11. 12. 13. 17. 18. 19. 20. 21. 22. 

2 2 2 2 0 0 2 0 
2 -1 -1 2 i13 0 2 0 
2 -1 -1 2 -i13 0 2 0 
2 -1 2 -1 0 13 2 0 

2 -1 2 -1 0 -13 2 0 
4 1 -2 -2 0 0 4 0 
6 3 0 0 0 0 2 2 
6 3 0 0 0 0 2 -2 

8 -4 2 2 0 0 0 
8 2 -1 2 -i/3" 0 0 
8 2 -1 2 i13 0 0 
8 2 2 -1 0 -13 0 

8 2 2 -1 0 13 0 
12 -3 0 0 0 0 4 
16 -2 -2 -2 0 0 0 
18 0 0 0 0 0 -6 

TABLE XV. Ray characters of Group 45 belonging to the factor 
system a == -1, 'Y == 1. Other classes provide only zero ray 
characters. 

Class 1. 2. 

4 1 
4 1 
8 -1 
8 -1 

8 -4 
8 5 

12 -3 
12 -3 
24 3 

3. 

-2 
-2 

2 
-4 

2 
2 
o 
o 
o 

4. 

-2 
-2 
-4 

2 

2 
2 
o 
o 
o 

7. 10. 11. 

-2-/2 2 --./2 
2-/2 2 -/2 

o 4 0 
040 

o 4 0 
o 4 0 

2-/2 -2 --./2 
-2-/2 -2 -/2 

0-40 

12. 18. 

-1 3 
-1 3 

1 -3 
1 -3 

-2 0 
1 3 
1 3 
1 3 

-1 -3 

TABLE XVI. Ray characters of Group 45 belonging to the factor 
system a == y == -1. Other classes provide only zero ray charac­
ters. 

Class 1. 2. 3. 4. 10. 11. 12. 18. 23. 

4 
4 
8 
8 

1 -2 
1 -2 

-1 2 

-2 2 -12 -1 3 
3 

-3 

-212 
-2 2 
-4 4 

-1 -4 2 4 

12 -1 
o 1 
o 1 -3 

212 
o 
o 

II 
8 

-4 2 
5 2 

2 4 
2 4 

o -2 
o 1 

o 
o 

12 
12 
24 

-3 0 
-3 0 

3 U 

o -2 
o -2 
o -4 

-12 1 
12 1 
o -1 

o 
3 
3 
3 

-3 

212 
-212 

o 

TABLE XVII. Representations of 0. subduced by the irredu­
cible vector representations of Group 47. r~~, with I.L = 1-20, 
are representations of 0. subducted by the irreducible vector 
representations of Group 47, the dimensionalities of which are 
d l == d 2 == d 3 = d 4 == 1, d s == d 6 == 2, d 7 == d s == d 9 == d lO = 3, 
d ll =d12 =d13 =d14 = 4, dIS =d16 =d17 =dIS = 6, 
d I9 = d 20 = 8. rJU), with J) = 1-10, are the irreducible vector 
representations oi 0., the dimensionalities of which are d l = 
d 2 = d l - == d 2 - == 1, d I2 == d12- == 2, dIS = d 2S = d IS- = d 2S-
= 3. 

(P) L: (U) r4~) = "L;a"" r J;l r47 = II alJIJ r 'Oh 

" 
(1) (1) (11) (2) ffi (25-) 
(2) (2) (12) (25) ffi (2-) 
(3) (1-) (13) (15) ffi (1-) 
(4) (2-) (14) (1) ffi (15-) 
(5) (12-) (15) (15) Ell (15-) 

(6) (12) (16) (25) ffi (25-) 
(7) (1) Ell (12) (17) (25) Ell (15-) 
(8) (2) Ell (12) (18) (15) ffi (25-) 
(9) (2-) ffi (12-) (19) (25) Ell (15) Ell (12-) 
(10) (1-) Ell (12-) (20) (12) Ell (25-) Ell (15-) 

0 
0 
0 
0 

0 
0 
0 
0 

2 2 2 2 2 2 0 0 
-1 2 2 -1 -1 2 i13 0 
-1 2 2 -1 -1 2 -;,/3 0 
-1 2 2 -1 2 -1 0 13 
-1 2 2 -1 2 -1 0 -../3 

1 4 4 1 -2 -2 0 0 
-1 -2 6 3 0 0 0 0 
-1 -2 6 3 0 0 0 0 

0 0 -8 4 -2 -2 0 0 
0 0 -8 -2 1 -2 i13 0 
0 0 -8 -2 1 -2 -ifi 0 
0 0 -8 -2 -2 1 0 13 
0 0 -8 -2 -2 1 0 -13 
1 -4 12 -3 0 0 0 0 
0 0 -16 2 2 2 0 0 
0 2 18 0 0 0 0 0 

TABLE xvm. Representations of 0. subduced by the irre­
ducible vector representations of Group 45.r~;, with I.L = 1-25, 
are representations of 0. subducted by the irreducible vector 
representations of Group 45, the dimensionalities of which are 
d l = d 2 == d 3 = d 4 = 1, d s = d 6 = d 7 == ds == 2, d 9 = d IO = d ll 
= d12 = d I3 = 4, d I4 = dIS = 6, d lG = d I7 = d lS = d I9 == 8, 
d 20 = d 2I = d 22 = d 23 = 9, d 24 = 12, d 2S = 16. 

r(pi 
45 

"L; r (u) 
= v apLi 47 ="L;b r tw

) 
w Jlw Ok 

(1) (1) (1) 
(2) (3) (1-) 
(3) (4) (2-) 
(4) (2) (2) 
(5) (1) ffi (4) (1) ffi (2-) 

(6) (2) ffi (3) (2) (j) (1-) 
(7) (6) (12) 
(8) (5) (12-) 
(9) (5) ffi (6) (12-) ffi (12) 
(10) (12) (25) ffi (2-) 

(11) (11) (2) ffi (25-) 
(12) (13) (15) ffi (1-) 
(13) (14) (1) ffi (15-) 
(14) (15) (15) Ell (15-) 
(15) (16) (25) (fl (15-) 

(16) (11) ffi (13) (2) ffi (25-) 'lJ (15) Ell (1-) 
(17) (12) Ell (14) (25) Ell (2-) Ell (1) Ell (15-) 
(18) (19) (25) 9)(15) Ell (12-) 
(19) (20) (12) 9) (25-) 'lJ (15-) 
(20) (7) ffi (16) (1) ffi (12) ffi (25) ffi (25-) 

(21) (10) Ell (18) (1-) ffi (12-) 4 (15) ffi (25-) 
(22) (8) ffi (18) (2) ffi (12) Ell (15) ffi (25-) 
(23) (9) Ell (17) (2-) ffi (12-) (jJ (25) (jJ (15-) 
(24) (15) (jJ (16) (15) (jJ (15-) ffi (25) (jJ (25-) 
(25) (19) Ell (20) (25) (jJ (15) (jJ (12-) (jJ 

(12) (jJ (25-) (jJ (15-) 

ther sequence of diagonalizations of much smaller 
matrices (n x n), as in the Appendix. We believe 
it should be very useful even for groups of still 
larger order and even more complicated struc­
ture. Of course, in any event, one requires the 
structure constants of the group as input data. 
Since one is using Eqs. (2. 2)-(2. 4), the orthonor­
mality relations for the group characters are 
automatically satisfied. 

Turning to the results for Group 47. Group 45, and 
0h[31 we have given in the subduction tables, we 
can make two observations. These may be related 
to the original conjecture on a relation betwp.en 
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accidental degeneracy in f3] (for example, in Ok) 
and a higher symmetry in [4] (for example, in the 
Group 47 and Group 45.) First note that, with few 
exceptions, the representations of 0h which 
"stick" to give a representation of 47 or 45 are of 
different parity. Thus, from Table XVII, (15-) + 
(15+) of Ok combine to give (15) of 47, and simi­
la!"ly for 45. Thus a sticking of states of different 
parity in Ok may be related to the higher group 
symmetry. 

Secondly, observe that the representations of Ok 
which "stick" are never two of the same species. 
Equivalently stated: In the subduction from r(j) of 
47, or 45, one never finds a r(k) of Ok more than 
once. This seems related to the "no crossing" 
rules so well known already: Two states of the 
same symmetry (e.g., the symmetry r(k) of Ok) 
cannot touch. 

APPENDlX 

A method will be given for solving the bilinear 
equations (2. :31) obtained in Sec. 2B. This com­
pletes our method of obtaining characters of 
irreducible vector representations of finite groups. 

We have, for d1 = d 2 = ... = d
ll 

= ... = dn , 

n 

allaall8 = dll I;fa8yaIlY' Il, 0', {3 = 1,2, ... , n, (2. 31) 
y~l 

with 

fa8 == t ~r" hij.kVaYtljVyk· (2.32) 
y j.j.k~l grjrj 

The coefficients f a8y are real and given. Rewrite 
(2. 31) in the form 

n 

~ (d ll ict.8Y- aliaolly)allY = 0 (AI) 

For a given 0', we can define a matrix Ma with 

(A2) 

Then (AI) implies that allcx' Il = 1,2, " ., n, are the 
eigenvalues of Mcx, associated with eigenvectors 
allY' 'Y = 1,2, ... , n, which are independent of the 
index 0'. It can easily be shown that Mcx is a nor-
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the Ph,D. degree presented to the Physics Department, New 
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was supported in part by the Army Research Office Durham 
and the Aerospace Research Laboratories WPAFB, Dayton, 
Ohio. Publication supported by the National Science Founda­
tion. 
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It is shown that there is a simple alternative to the Bondi type of coordinate condition in asymptotically 
flat spaces, which leads to a different asymptotic coordinate "group whose structure is Simpler than 
that of the BMS group. As a concomitant to this work, there was discovered a scalar function on null 
infinity. From an analysis of this function one can obtain, starting from the asymptotic shear of one 
family of hypersurface orthogonal rays, (1) all null asymptotically shear-free congruences, (2) the 
asymptotic shear of all hyper surface orthogonal rays. 

1. INTRODUCTION 

In the early 1960's Bondi! et al.and then Sachs,2,3 
while studying asymptotically flat solutions to the 
Einstein field equations, discovered and studied a 
group now known as the Bondi-Metzner-Sachs 
(BMS) group, which briefly can be looked upon as 
the semidirect product of the homogeneous 
Lorentz group and an infinite-dimensional Abelian 
group 4 of which the first four elements can be 
identified with the translations of the Poincare 
group, the remaining elements being known as 
supertranslations. The BMS group first arose as 
the coordinate group that preserved certain co­
urdinate cunditions (we wili call them Bondi type) 
which were imposed at infinity, Later Sachs 3 
and Penrose 5 ,6 realized that there was an intrin­
sic geometric significance to the BMS group; 
namely, that it was generated by the conformal 
Killing vectors of the null surface at infinity. 
Though a great deal of effort has gone into studying 
the geometric meaning, the group structure and 
representations3,7 of the BMS group, little of phy­
sical relevance seems to have emerged. Almost 
to the contrary it has proved to be a hindrance in 
understanding the physical variables in gravita­
tional radiation theory. Though energy and linear 
momentum are well defined via the generators of 
the translation subgroup, angular momentum is 
not. S ,9 Another difficulty is the vast proliferation 
of generators known as supermomenta, arising 
from the supertranslation part of the BMS group. 
Owing to these difficulties, considerable thought 
has gone into the question of whether further con­
ditions (either coordinate or boundary conditions) 
could be irrrposed to restrict the asymptotic coordin­
ate group to the Poincare group. This effort has 
been either unsuccessfull 0 or artificial. 11 

The first purpose of the present note is to show 
that it is possible by means of asymptotic coordin­
ate conditions different from the Bondi type to 
obtain a different group. This new group, though 
stilllarge,is consideraply smaller than the BMS 
group. Its structure is that of the direct product 
of the homogeneous Lorentz group with an Abe­
lian group, the Abelian group being closely associ­
ated with the transformations leading from one 
arbitrary timelike world line to another in Min­
kowski space. It thus appears as if this group has 
a more intuitive meaning than the BMS. It should 
be emphasized that we are not suggesting that 
this group replace the BMS group as the asymp­
totic symmetry group, but as the asymptotic co­
ordinate group. 

Of possibly equal or even greater interest was the 
closely related discovery of a scalar function on 
null infinity (on J+ in Penrose's conformallangu­
age) from which can be obtained by differentiation 

(a) null rays which are asymptotically shear-
free (but twisting) and 

(b) the asymptotic shear or news function. 

In Sec. 2, we review some pertinent properties of 
asymptotically flat spaces. In Sec. 3 the scalar 
field on null infinity is introduced which in turn 
is used in Sec. 4 to impose new coordinate condi­
tions. The remaining coordinate freedom is dis­
cussed. In Sec. 5, by computing the commutator 
of two of the allowed coordinate transformations, 
the fact that they form an Abelian group is ascer­
tained. In Sec. 6 the geom etric meaning of one of 
the basic variables is discussed. 

2. NULL INFINITY 

In this section where we discuss some properties 
of null infinity, we will use the descriptive langu­
age of the conformal infinity of Penrose, though all 
of the analysis will be done in physical space. We 
thus look upon infinity as a three-dimensional null 
surface with a degenerate line element,g being the 
null rays or generators of the surface with tangent 
vectors nl'. 

The topology is S2 x R. (See Fig. 1). The surface 
referred to as J+ is coordinated in the following 
fashion: (a) Since the generators g can be mapped 
one-to-one on S2, they can be labeled by tiIt~ com­
plex stereographic coordinates of a sphere, ~ and 
~ ; and (b) arbitrary spacelike, nonintersecting 
cuts can be taken in J+ and labeled by u == const 
in a monotonic fashion. The permitted coordinate 
transformations are (a) the one-to-one conformal 
transformations of the sphere onto itself, Le., the 
relabeling of the generators by 

(2.1) 

and (b) taking different families of cuts through J+, 

u' = G (u, ( , ( ) . (2.2) 

ChOOSing a particular coordinate system on J+ 
permits us to coordinatize uniquely a neighborhood 
of J+ in the four-dimensional space-time by the 
following proceaure: from each point of each u = 
const cut, take the null geodesic with tangent vector 
ll', which strikes the cut orthogonally and comes 

2462 
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from the interior. (See Fig. 1.) This leads to a 
family of null surfaces each being labeled by its 
cut of J+, the generators of these surfaces being 
labeled by their intersection with the generators 
of J+. If we choose the "distance" along each 
generator as the affine length r (properly norma­
lized 12), we get a unique null coordinate system. 
It was this system that was used in NU12 to des­
cribe the asymptotically flat solutions to Ein­
stein's equations. 

In NU it was shown that there were two functions 
defined on J+ that constituted the free data to 
determine a solution of Einstein's equations. 
(There are other data, not given on J+, which do 
not concern us.) The first of these is the real 
function P(u, ~, ~) defined from the metric of the 
limiting two-surfaces u and r const by 

lim r-2 ds2 == d~4. 
1'->00 p2 

In other words knowing P is equivalent to knowing 
the metric of the two-dimensional cuts of J+ . 

The second function, oO(u, ~, ~), is the (complex) 
asymptotic value of the shear a of the null rays 
[I'. 

It is defined from a by 

It is important for us to know how both aD and P 
transform under (2.1) and (2.2). This can be 
inferred from NU (after a very long calculation) 
with the result that 

(a) from (2.1), 

a'O= e2naO, 

p,2 =/":/ ~ P~ (2.3} 

where e 2n = (If, If,,;) = [(c~ + d)/(~ + d»)2. 

(b) from (2.2), 

. 
- £. a-3t5G o 'llG (2.4) P , 

P' = a- l p, 

~ and ~ conslonl lines 

or generolors g -----

u = conslonl culs 

(2.5) 

null surfoce u = constont 

null <;Ieodesic wilh 

longenl vector j" 

FIG. 1. Future null infinity, r. 

. 
where G 0= G. u and t5 is an angular differential 
operator .13,11 

It is seen that though we have three real functions 
(P and the real and imaginary parts of a O ) to 
specify freely, only two are really essential be­
cause we still have the arbitrary coordinate trans­
formation u' = G(u, ~,~) to impose a restriction. 

For ex::tmple, G could be c;hosen to make P' = 
Ml + ~(), in which case only a O 'can be chosen 
freely. This condition is equivalent to the Bondi­
type coordinate conditions. In fact it is easily 
seen from (2.3) and (2.5) that the remaining co­
ordinate freedom would be just the BMS group. 

In the above paragraph we used (2. 5) to impose 
conditions on P. The question arises whether or 
not we can use (2.4) to impose conditions on 0° 

to eliminate one of its two degrees of freedom 
and, if so, what the remaining coordinate freedom 
will be. The remainder of the paper is devoted to 
answering these questions. 

3. THE SCALAR FUNCTION <p on J+ 

We will now introduce a "potential" for a O by the 
nonlinear equation 

00 = 'ilL + LL ,u (3.1) 

and a potential for L by 

0== t5¢ + L¢,u' (3.2) 

We claim that, though a O has the very complicated 
transformation law (2.4) under u' = G(u, ~,O, L 
will transform as 

L' = L + C- 1t5G (3.3) 

and ¢ will transform as a scalar 

¢'(u',~,() == ¢(u,~,e), u' == G(u,~,~). (3.4) 

The easiest way to prove these assertions is to 
work backwards starting from (3.4). First note 
that from the transformations 

u' = G(u,~, ~), ~'= ~, 

we immediately get 

. au au • 
1 = G -~ - = G-l, 

au' QU' 

o = G ~ + G ~ ~ = - C-1G 
a~' '~a~' ". 

Then by differentiating (3.4) with respect to u' 
and ~', we obtain 

,1,' _ A, QU _ A, C-1 
'P .u' - 'P,u cu' - 'I',u , 

,1,' _,to + A, ~ - cp - cp C-IG 
'P .,,- 'P,~ 'I',u a~' - ,I; ,u ". 

Taking the ratio, yields 

(3.5) 

(3.6) 
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(3.7) 

If we multiply by P':::: C- 1 P and use the definition 
of ti acting on a spin-weight zero quantity, we have 

(3.8) 

This is precisely (3.3) if we take L:::: - ti¢/¢.u 
from (3.2). By continuing this process, the trans­
formation law of aO obtained from (3.1) and (3.3) 
can be shown to be the same as (2.4). 

In addition it can be shown that the a O derived 

as a canonical slicing and the </J and the associated 
aO and L will be referred to, respectively, as a 
canonical <p, cfJ ,and L. It is clear that the number 
of different canonical slicings are equal to the 
number of different (real parts of) solutions to the 
equations 0° :::: '6L + LL, 0:::: '6</J + L¢ u' .u . 

The coordinate conditions we then choose are the 
canonical slicings, with the remaining freedom 
being the transformations between canonical slic­
ings. 

In order to obtain a feel for the amount of the free­
dom left, we shall study the equations 

from ¢ by (3.1) and (3.2) transforms correctly 0° :::: '6L + LL.u, 0:::: ti¢ + L¢.u' (4.4) 
under (2.1) if ¢ is assumed to be of spin and con-
formal weight zero.14 We first write P in the form 

It should be emphasized that the Land ¢ derived 
from a a 0 are not unique. This lack of uniqueness 
will be mirrored in the coordinate freedom after 
we impose our new coordinate conditions. 

In addition, though we do not know the geometric 
significance of </J, L has a clear and significant 
meaning, the discussion of which will be postponed 
till later. 

4. COORDINATE CONDITIONS 

Assume that we are given J+ with a slicing, as 
well as the 0 0 and the metric, p(u, ~,~) associated 
with the slicing. If we transform to a second 
slicing, the new a'O and P' could be calculated 
directly from their transformation laws. It would, 
however, be much easier if a potential <p(u, ~~ ~) for 
the original 00 were known, for by just differentiat­
ing it in the new coordinate system the new 0'0 

would be obtained. In other words the difficult 
transformation law for a 0 can be shifted to the 
simple law for <p. It is this observation that per­
mits us to choose a canonical family of slicings. 

From a given (Jo and P, assume that we have a ¢ 
written in the form 

(4.1) 

If we now perform the transformation 

(4.2) 

the ¢ becomes 

¢; = u'+ i(3; (u',~,~). (4.3) 

If a second ¢, from the same 0 0 and P were found, 
i.e., 

~ = (12 + i(32' 

the transformation u" = <l'2 would put it into the 
form 

<Pi = u" + i(32' 

Whenever a sliCing or coordinate system is found 
such that ¢ is in the form (4.3) we will refer to it 

P = P V with P = ~ (I + r:~) o 0 

and rewrite (4.4) as 

0= Vlso<P + L¢,u (4.5) 

with '6 0 being taken with respect to Po. There is a 
unique integral operator 15 denoted by '6b which 
is the generalized inverse to tio . With its aid, (4. 5) 
can be converted to the integral equations 

L:::: V-l(15b(a O - LL,u) + . ~ Am(U)lY1m\ 
\ ,.,=-1 ~4. 6) 

r L 
¢:::: '60 v</J,u + Ao(u)Yoo , (4.7) 

with the A m(u) and Ao(u) being four arbitrary func­
tions of u. It is clear from this that the freedom 
of solutions depends only on these four functions,. 
which, therefore, must also determine the coordin­
ate freedom. 

This is not to say that we know or can explicitly 
obtain expressions for the allowed coordinate 
transformations. Nevertheless, we will be able 
to show that these transformations form an 
Abelian group. 

5. THE COMMUTATOR 

The main idea is to first choose a canonical slicing, 
i.e., ¢ c = U + ij3, and then to use the associated 
canonical ag to find other neighboring solutions 
¢ = ¢c + EI/Il from which the coordinate trans­
formation to a new canonical slicing may be found. 
From two of these transformations the infinitesi­
mal commutator can be formed. Unfortunately, it 
is very difficult to carry out this program. Use 
had to be made of the following artifice. No 
place in Secs.3 and 4 was essential use,made of 
the facts that u is a real variable and that ~ is the 
complex conjugate of ~. In fact all the arguments 
for the introduction of the scalar </J remain un­
changed even if u' = G(u, 1;, e) is a complex trans­
formation. (Though we are here treating this com­
plexification as a pure artifice with no significance, 
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it should be noted that a special case of it is the 
complex coordinate transformation which led from 
the Schwarzschild solution to the Kerr metric .16) 
We use this complex G to impose stl'onger "co­
ordinate conditions" than were used in Sec. 4, 
namely we chooseu' == G (u,~ ,e) == <p(u,~ ,e), so that 
the new "canonical" form is <Pc = u with Lc = 0 
and af == O. We thus wish to solve the equations 
a~ == 0 == csL + LL,u and 0 == cscb + L<p,u with L 
and dJ close to their "canonical" forms, Le., with 
L = Lc + ELl = ELl and cb== cbc + EI/ll = U + E1h· 
It is clear that, to first order,1/Il satisfies 

(5.1) 

and has solutions of the form 

(5.2) 

with 1[, = 1 ~ d ~ I p2 and Y and z arbitrary functions 
of u, ~. Note also that 1/1 1 is the infinitesimal trans­
formation, u' = u + EI/Il leading from one "canoni­
cal" form to another. It is thus from two separate 
solutions of (5.1) that the commutator will be 
constructed. 

Labeling the two solutions 1/11 (u, ~ ,~) and 1/1 2 (u, ~ , ~), 
the commutator is the difference u" - u** == E21/1c , 
where 

u' == u + E1/Il(u,~,~), 

u" =u' + EI/I2(u',~,() (5.3) 

= u + E1/Il (u, ~,~) + EW2(u + E1Vlo ~, ~), 
and 

u* = U + EW2(u,~, ~), 
u** = u* + EW'l (u*, ~,~) = U + EW2(u, ~,~) 

+ El/li(u + E1/I2' ~,1). (5.4) 

Before the commutator can be evaluated, using 
the properties of (5.2), a subtlety must first be 
discussed. We began by considering two trans­
formations, 1/11 and 1/12 which change the co­
ordinate u. The question then arises as to what 
we mean by the same transformation acting on 
the coordinate u' or u*. [This ambiguity was 
symbolized by the use of a prime on 1/1 in (5.3) 
and (5.4).] We will avoid the issue for the time 
be!.ng and just w!:ite that when 1/I2(u, ~,~) = Y2(u, 
~,~)F + Z2(U,~, ~),then 

1/12(U',~,~) = [Y2(U',~) + EB 1Y2(u', e)]F' + [Z2(U', f) 

where t d~ 
F' - J - P' = (1 - Elh)p 

- 0Cl p'2, 

and the B1Y2 and B1z 2 are for the moment undefin­
ed changes in Y 2 and z 2 brought about by the trans­
formation u' = u + E1/Il' Exactly the same thing 
would be done to 1/1' 1 with the 1 and 2 interchanged. 

By substituting u' = u + E1/Il into (5: 5) and writing 

f~ d~1/Il 
F' = F + EolF,OlF = 2 --2-' 

0Cl P 
we have 

+ Y2 6lF + z21/1l + Blz 2]· 

Thus, from (5.3) and (5.4) the commutator 1/Ic be­
comes 

c 2(u" - u**) = I/Ic = (j21/1l + 0lY 2)F + Y2 0l F 

+ z21/1l + 0lz2 - {tY 11/l2 + 02Y l)F + Y l 02F 

+ z11/l2 + 02Zl} = LY21/1l - Y11/l2 + 0lY2 

- 02Yl]F + [z21/1l - z11/l2 + 0lz2 - 02Z1] 

Using 1/11 = y1F + Zl' 1/12 = Y2F + Z2' we have 
after rearrangement 

I/Ic = (j~l - YlY2)F2 + [(ZlY2 - Z~l) + (Z~l 

- ZlY2) + (OlY2 - o~l)]F+ (Z2Zt - ZlZ2) 

+ (OlZ2 - 02Zl) + Y2 6lF - Yl02 F • 

The last two terms can be rewritten as 

Y20 lF - Y l 02 F = 2(y~1 - YlY2)J~ :~ F 

(y ) J t d~ • • + 2Y 1 - Y lY 2 0Cl p2 F 

+ (y~l - Yl Z2) 1" !!r) 
-00 p2 

where the first term has been simplified by inte­
gration by parts. We thus obtain 

I/Ic = [(Y2Zl - Y l Z2) - (Z2Yl - ZlY2) 

+ (61Y2 - °2Yl)JF 

+ (Z2Z1 - .llZ2) 

+ (li 1Z'2 - li 2z 1 ), (5.6) 

which is of the form (5. 2), from which it follows 
that the coordinate transformations form a group. 
Note also that the commutator is independent of 
the form of F (or P). We will exploit this by show­
ing that for a special P the commutator vanishes 
and thus we should in general choose the liy and 
oz to make (5.6) vanish. This is accomplished by 

where S y and S z are symmetric in 1 and 2. 
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For the special P we choose 

p=;::: vPo = t v(l + ~,~), (5.7) 

where v(u,~,~) = L;/;,oA1m(u)Yzm (~,~) such that 
it has no zeros. Then Eq. (5.1) takes the form 

with the general regular solution being 
I 

(5.8) 

tJ;(u,~,~) = v-I L; blm(u)Ylm(~'~)' (5.9) 
1=0 

If we now say, by definition, that the same trans­
formation start~ng from a primed system, i.e., 
P' = t v' (1 + ~~) is given by 

I 

tJ;'(u',~,~) = v,-l L; blm(u')Yzm(~'~)' 
1=0 

it is not difficult to show that the commutator of 
two transformations (5.9) is zero. [Use, of course, 
must be made of the transformation properties of 
P,Le., 

P' = (1 - EJ;)P, • v' = (1 - EJ;)V, 
I 

which guarantees that v' = L; A'lm(u')Yzm'] 
1=0 

If we now return tothe real canonical slicing by the 
inverse of the complex coordinate transformation 
u' = G, the commutator remains zero and thus our 
original contention is proven. 

As an inessential point, we wish to remark that the 
transformations obtained from (5.9) have a very 
simple geometric meaning in Minkowski space. If 
one takes an arbitrary timelike world line, the light 
cone from every point on the line gives a slicing 
of J+. A neighboring wor ld line yields a neighboring 
slicing with the transformation connecting the slic­
ingsbeinggivenbyu'=u+ EtJ;. The four b1m(u) are 
related to the arbitrary time-dependent 4-vector 
connecting the two world lines. 

6. GEOMETRIC SIGNIFICANCE OF L 

In Sec. 2, we introduced on null infinity two-dimen­
sional cuts and generators g with tangent vectors 
nJ.'. By considering the second set of rays which 
are orthogonal to the cuts (with tangent vectors 
[1'), we were able to construct a family of null 
hypersurfaces in a four-dimensional neighborhood 
of null infinity. In general the tangent vector s (or 
gradients of the null surfaces) have an asymptotic 
shear aO, arising from 

aO 
a = - + O(r-3 ). 

r2 
(6.1) 

The question can be raised-is it possible to intro­
duce other null rays striking the cuts, but now not 
orthogonally, such that their asymptotic shear 
vanishes. The new tangent vectors denoted by [*1', 

can be obtained from null rotations around iiI', 
namely by 

l*1' = lil + AmI' + AmI' +Mnl', (6.2) 

where mil and ml' are the (complex) tangent vec­
tors to the cut,nl' is the inward pointing null vec­
tor orthogonal to the cut, and the A and A are func­
tions on the neighborhood of J+, that are to go to 
zero on J+. (All rays striking a point of J+ are 
parallel to lil at J+.) Thus we may write (6.2) as 

-

l*1' = lil +.£ mil + 1:.- ml' + O(r-2 ), (6.3) r r 

with L(u, ~, ~) still arbitrary. Note that the meaning 
of L is effectively the scalar product of [*il with the 
tangent vector ml' or 

Computing the shear a* of [*il, we obtain 

aO* 
a* = - + O(r-3 ) 

r2 
with 

aO* = aO - I5L - Lt. 

(6.4) 

(6.5) 

(6.6) 

If we thus demand the vanishing of the asymptotic 
shear aO*,we recover (3.1),the starting point of 
our investigation. 

7. DISC USSION 

We have shown in this paper how to introduce co­
ordinate conditions in asymptotically flat space 
which are different from those of Bondi. These 
conditions lead to a coordinate group not only of 
greater simplicity than the Bondi-Metzner-Sachs 
group, but one which also has a simple straight for­
ward geometric interpretation in Minkowski space: 

Concomitant with these results was the discovery 
,of the differential equation (3.1), leading to asymp­
totically shear-free null congruences. Already 
this equation has been exploited by Penrose 17 to 
define twistors in asymptotically flat space. In 
a future paper we will show how to introduce a 
coordinate system associated with these twist-
ing shear-free rays and the transformation to the 
hyper surface orthogonal ray coordinate system. 
This will be used to analyze the physical meaning 
of the geometriC quantities which appear in, for 
example, the algebraically special twisting metrics. 

One of the major applications we envisage for the 
work presented here, is to use up the remaining 
coordinate freedom, by, in the sense to be explain­
ed, transforming to the center of mass frame. 
Physical quantities such as energy or linear mo­
mentum can be defined 9 at infinity by integrals 
over cuts. If the center of mass can be so defined 
relative to one of our canonical cuts, then it is 
hoped that a particular canonical cut will yield a 
zero center of mass and thereby yield a unique 
coordinate system associated with a particular 
solution. As a reward we would presumably obtain 
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the equations of motion of this center of mass and 
the "internal" angular momentum, Le., angular 
momentum relative to the center of mass. Pre­
liminary investigations bear this out. 

• This research has been supported by the NSF, Grant No. GP-
22789. 
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The method of many-body point transforms previously developed by the author is modified to eliminate 
the interacting particle cluster formalism. The cutoff terms in the transformation, and thus in the 
Hamiltonian, are therefore removed. For the hard-core many-body problem, as in the previous work, a 
Hamiltonian is obtained which is Fourier analyzable, Hermitian and amenable to ordinary perturbation 
and variational techniques while still being equivalent to the original Hamiltonian. No approximations 
are made. It is demonstrated that the use of the standard zeroth-order approximation of the ground 
state Bose system, i.e., a constant, for the transformed wavefunction gives a negative expectation value 
of the energy for the hard core system. This discrepancy arises from the extended range of the new 
potential generated by the transformation, which necessitates expliCit conSideration of boundary con­
ditions not satisfied by the above wavefunction. 

1. INTRODUCTION 

In a previous paper,l referred to herein as I, we 
developed an interacting particle cluster method 
for transforming the many-body hard-core Hamil­
tonian into a Fourier analyzable, Hermitian Hamil­
tonian which was completely equivalent to the orig­
inal Hamiltonian while being amenable to ordinary 
perturbation and variational techniques. The meth­
od was based on the point transformation method 
developed by Eger and Gross. 2 - 4 Using this meth­
od with the assumption of pairwise additivity, the 
ground-state energy and the low-level excitations 
of the hard-core Bose liquid have been calculated3 
and found to agree in the dilute gas limit with the 
lOW-density results of Lee, Huang, and Yang. s Sim­
ilarly, the ground-state energy and Landau para­
meters of the hard-core Fermi liquid have been 
calculated6 and found to agree in the dilute gas 
limit with the series expansion in cpl/3 (c being 
the hard-core radius, p being the denSity of the 
system) of Huang and Yang7 and Lee and Yang8 

for the ground-state energy and with the series ex­
panSions in cpl/3 of Abrikosov and Khalatnikov9 

for the Landau parameters. In addition, CooperID 
has used this method to calculate the virial coef­
ficients for the claSSical hard-core gas. In I the 
point transformation method was extended to the 

consideration of the many-body terms of many­
body systems. The point transformation was taken 
to be a continuous cluster expansion (one body iso­
lated, two bodies interacting, three bodies interact­
ing, ... , N bodies interacting) in the 3N dimension­
al transformed space. The transformed Hamilto­
nian was found to be Fourier analyzable and Her­
mitian, while having the same continuous cluster 
expansion form as the transformation. For large 
clusters this expansion technique gave rise to 
mathematical computations of prohibitive com­
plexity, resulting from the mixing of the individual 
cluster transformations, caused by the continuity 
requirement. In this article we shall derive re­
sults amenable to the calculation of many-body 
effects. We note that the mathematical computa­
tions in this paper, while being similar to, are 
completely independent from those of I. In Sec. 2 
we shall review the point transformation method, 
and the results of I, for use in the derivation of 
and comparison with the results obtained in this 
article. In Sec. 3 we choose general forms for the 
N-body transformation, and derive the transformed 
Hamiltonians. In Sec. 4 we apply this method to the 
N-body hard-core problem. ChOOSing a specific 
transformation which removes the hard-core po­
tential, we calculate the transformed Hamiltonian. 
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the equations of motion of this center of mass and 
the "internal" angular momentum, Le., angular 
momentum relative to the center of mass. Pre­
liminary investigations bear this out. 
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the interacting particle cluster formalism. The cutoff terms in the transformation, and thus in the 
Hamiltonian, are therefore removed. For the hard-core many-body problem, as in the previous work, a 
Hamiltonian is obtained which is Fourier analyzable, Hermitian and amenable to ordinary perturbation 
and variational techniques while still being equivalent to the original Hamiltonian. No approximations 
are made. It is demonstrated that the use of the standard zeroth-order approximation of the ground 
state Bose system, i.e., a constant, for the transformed wavefunction gives a negative expectation value 
of the energy for the hard core system. This discrepancy arises from the extended range of the new 
potential generated by the transformation, which necessitates expliCit conSideration of boundary con­
ditions not satisfied by the above wavefunction. 

1. INTRODUCTION 

In a previous paper,l referred to herein as I, we 
developed an interacting particle cluster method 
for transforming the many-body hard-core Hamil­
tonian into a Fourier analyzable, Hermitian Hamil­
tonian which was completely equivalent to the orig­
inal Hamiltonian while being amenable to ordinary 
perturbation and variational techniques. The meth­
od was based on the point transformation method 
developed by Eger and Gross. 2 - 4 Using this meth­
od with the assumption of pairwise additivity, the 
ground-state energy and the low-level excitations 
of the hard-core Bose liquid have been calculated3 
and found to agree in the dilute gas limit with the 
lOW-density results of Lee, Huang, and Yang. s Sim­
ilarly, the ground-state energy and Landau para­
meters of the hard-core Fermi liquid have been 
calculated6 and found to agree in the dilute gas 
limit with the series expansion in cpl/3 (c being 
the hard-core radius, p being the denSity of the 
system) of Huang and Yang7 and Lee and Yang8 

for the ground-state energy and with the series ex­
panSions in cpl/3 of Abrikosov and Khalatnikov9 

for the Landau parameters. In addition, CooperID 
has used this method to calculate the virial coef­
ficients for the claSSical hard-core gas. In I the 
point transformation method was extended to the 

consideration of the many-body terms of many­
body systems. The point transformation was taken 
to be a continuous cluster expansion (one body iso­
lated, two bodies interacting, three bodies interact­
ing, ... , N bodies interacting) in the 3N dimension­
al transformed space. The transformed Hamilto­
nian was found to be Fourier analyzable and Her­
mitian, while having the same continuous cluster 
expansion form as the transformation. For large 
clusters this expansion technique gave rise to 
mathematical computations of prohibitive com­
plexity, resulting from the mixing of the individual 
cluster transformations, caused by the continuity 
requirement. In this article we shall derive re­
sults amenable to the calculation of many-body 
effects. We note that the mathematical computa­
tions in this paper, while being similar to, are 
completely independent from those of I. In Sec. 2 
we shall review the point transformation method, 
and the results of I, for use in the derivation of 
and comparison with the results obtained in this 
article. In Sec. 3 we choose general forms for the 
N-body transformation, and derive the transformed 
Hamiltonians. In Sec. 4 we apply this method to the 
N-body hard-core problem. ChOOSing a specific 
transformation which removes the hard-core po­
tential, we calculate the transformed Hamiltonian. 
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This Hamiltonian is Fourier analyzable, Hermitian 
and equivalent to the original Hamiltonian, while 
being amenable to ordinary perturbation and varia­
tional techniques. In Sec. 5 we consider the appli­
cation of this transformed Hamiltonian to the cal­
culation of the ground-state energy. We first show 
that we obtain the standard results for the two­
body isolated hard-core system. We then consider 
the calculation of the ground-state energy of the 
N-body hard-core Bose system. Using the varia­
tional principle and choosing the trial transformed 
wavefunction to be a constant, we obtain a negative 
result. This discrepancy is shown to be due to the 
neglect of boundary conditions. Sec. 6 contains our 
conclusions. 

2. RELEVANCE TO PREVIOUS WORK 

In I the point transformation method2 -4 was ex­
tended to the consideration of the many-body terms 
of many-body systems. The point transformation 
was taken to be regional (one body isolated, two 
bodies interacting, three bodies interacting, ... , 
N bodies interacting) and continuous in the 3N-di­
mensional transformed space. Notationally, Latin 
indices represent the particle indices 1 to N; 
Greek indices represent the Cartesian coordinates 
1 to 3; the Xi a. (the R i ) are the original coordina­
tes; the xia. (the r i) are the transformed coordina­
tes; the Pia. are the original momenta; the Pia are 
the transformed momenta; X ij a = Xi a - Xj a; Xi) a. 
= Xia - Xja.; rij = Irij I; and R, P, r,p represent 
their respective set of 3N variables, R i , Pi' r i and 
Pi' The regional many-body point transformation 
was thereby written in the form 

x [A;ja(1- h ij ) + Aia.hij] 

+ j'~l ( E '(r,. - b)9(,). - b)'(r •• - b~ 
k<j aF,,},k 

k, j~ i 

X [I:l(b - rik)l:l(b - rjk)l:l(rij - b) + I:l(b - rjk) 

x I:l(b - rij)e(rik - l;) + I:l(b - rij)l:l(b - rik) 

x B(1jk - b) + B{b - r ij ) 

x I:l(b - rik)l:l(b - rjk)][A ijka.(1 - hikh jk (1 - h ij ) 

- hijhkj(i - h ik) - hikh ij )+ Aija. h u,hjk(1 - hij) 

+ Ai/,a hijhkj (1 - hik) + Aiahikhij] + . ", 
(2.1) 

1 N 3 ~OXjB OX 'B) 
Pia. ="2 ~ L; ax- PjB + PjB ~ (2.2) 

}~l B~l ,a. "" 

where the I:l functions, specified by 

I:l(ria - b) = 0, 
= 1, 

I:l(b - ria) = 1, ria::::: b 
= 0, ria> b, 

(2.3) 
define the regions for the cluster formalism, b be­
ing the arbitrary range of the interaction in both 
the transformed and original spaces: the A i

1 
• •• i"a 

are the desired cluster (il' .. in) transformations 
of Xi1a. and the h ij are arbitrary functions subject 
to the conditions 

h ij = 0, rij = ° ) 
= 1, rij = 1, 

dhi/dr ij = d2hi/dr~j = 0, r ij = b, (2.4) 

and required for the continuity of the wavefunction; 
e.g.,for the first two cluster terms in Eq. (2.1), as 
r ij ~ b the (ij) cluster transformation of Xia.,Xia. 
= A ij a.(1 - hi ,) + Xia.hij' must approach the isolat­
ed one-body iaentify transformation Xi a. = Xi a' 

Under the point-transformation method the origin­
al Hamiltonian for equal mass particles of mass m, 

_ 1 N 

H(R,P)=2m ~ 
,~l 

3 

L; P~a. + V(R, P) 
a.~1 

(2.5) 

is transformed into itself expressed in terms of 
the transformed coordinates,2 

H(r,p) = H(R(r),P(r,p» 

1 N 
=- L; 

2m i,j~l 

where 

3 

L; (Pi alIi o.j B P}'B) 
a.,B~l 

+ V(r,p) + W(r), 

(2.6) 

(2.7) 

(2.8) 

1£2 N 
W(r) =- L; 

2m i.j~l 
t ,[jj _0_ ~ia.jB _0_ L!n)] , 

a,B~l axia. [ aXjS ~B 
(2.9) 

B is the Jacobian of the inverse transformation 
(r ~ R), and V(r, p) is V(R, P) written in terms of 
r, p. In addition, the original normalized wave­
function ij; (R) is related to the transformed norma­
lized wavefunction If; (r) by 

Iii (R(r» = ..j B(r) If; (r). (2.10) 

For a regional point transformation of the form Eq. 
(2.1), we found1 

oxkA/axlT = l:l«k»Ok/i;\T 

+ cE.) B«.k.l.» (oXkA/OXIT) U.l.)' 

(,k.I.)1(k) 
(2.11) 

(2.13) 
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N 

W(r) = ~ 
" 01 

(2. 14) 
and 

H =~ t ~ IJ«i1 ' •• i,,» I no 1 (i 1 " 'i,,) 

x [( ~ ±_ Piacx ~aaib8(il" 'i,,)P ibB\ 
a.b-1 a, B-1 ') 

+ We' 00.· )] (+ V(r,p), 
1.1 'n \ 

(2. 15) 

where ~ (.k.Z.) is the sum over all clusters includ­
ing the particles k and 1, IJ«. k. 1. » represents the 
product (and sums) of the IJ functions defining the 
(.k.I.) cluster, (axkJaxZT)(.k.Z.)iS axkJaxzT for the 
isolated (. k.I.) cluster,giajB(i.j.) is gja'B for the 
isolated (. i. j. ) cluster) {n(N)} represehts a specif­
ic combination of clusters of the N particl~s, 
~{n(N)) is the sum over all possible combinations 
of clusters,B(,z). is the Jacobian of the inverse trans­
formation (r-> 'R) for the isolated (n)j cluster, and 
w( . . 00. ) is the new coordinate only dependent po-

'1 'n 
tential W for the isolated (i1 " 'i,,) cluster. H the 
transformed potential has a range less than b, then 
Eq. (2. 15) can be written in the form 

N 

H = ~ L: IJ«i1 °o· in» 
n 01 (i

1
" 'in ) 

x [/21 t t PiaagiaaibB(il"'i,,)PibB) 
~ m a,bo1 a,Bol 

+W(i'''i)+V(i'''i~ (2.16) 
1" 1 n~ 

N 

== 2; ~ IJ«i1"'ill» H(j '''i)' (2.17) 
n 01 (i

1
'" in) 1 II 

where V(, . .... ) represents the transformed poten-
1 'n 

tials acting between the particles i1 " • in in the iso-
lated (i1 ' •• in) cluster, and H(i .. , i ) is the trans-

1 II 
formed n-body Hamiltonian of the isolated (i1'" i,,) 
cluster. 

In I we considered the case of the original poten­
tial VCR, P) being a short-range, strongly repulsive 
or hard-core potential, 

VCR, P) = V(R) = Vo, R:5,; C, 

= 0, R> c. (2, 18) 

Now the effects of a potential are proportional to 
both its strength and its range. We thereby showed 
that we could reduce the effects of this potential by 
reducing its range. Diagrammatically the desired 
effect of the transformation is shown in Fig. 1. To 
achieve this goal the desired cluster transforma-
tions A,. " ~,were defined in a manner such l' •• ,,~ 

that each n-particle cluster (i1 • •• i,,) shrunk about 
its center of mass R em(i

1 
••• i,,)' the shrinkage t:ac-

tor depending on the smallest interparticle dis­
tance. This shrinkage factor was so chosen that 
when the smallest interparticle separation Rij 
was equal to the strong interaction radius c, the 
smallest transformed interparticle separation r ij 
was equal to the transformed strong interaction 
radius E, where E is an arbitrarily chosen small 
distance. This concept is illustrated in Fig. 2 for 
the three-body cluster. Mathematically the desir­
ed cluster transformations Ail' •• ina have the 
formll 

(2.19) 

Ai ... i a = U i "'i Xi a + (1 - U i ... i ) 
1 n 1n1 1 n 

(X. ~ + ... + X,' ~) 
X '1~ n~ 

n (2.20) 

where 
n 1 n 

~ 
T" c,dol 

c<d 

n 
a,b 01 
a<b 

IJ(ri i - r i i )e(ri i ), 
ab cd cd 

iaib~icid (2.21) 

in which Tn is the normalization funetion 

VCR) 

• 

E 
r 

FIG, 1. Reduction (by the transformation) of the range of the 
strongly repulsive potential Vo' 

X,x 

z,z 

x-x ,x-x 
em em 

r---------- Y,y 

FIG. 2. Three-body (ijk) cluster transformation; em = center 01 
mass of (ijk) cluster .. 
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n 

Tn == L; 
c,d=l 
c <d 

n 
n 

a,b=l 
i<b 

iaib =icid 

8(ri i - r i i ), 
abc d 

(2.22) 

and iaib '" icid means that ri i and ri " are not 
abc'd 

the same interparticle separation. The product 
over the 8 is zero unless r i i is less than or equal 

c d 
to each one of the other interparticle distances 
r i i in the n-body cluster (i1 " . i ). The function 

a b n 
e(r i i ) is the actual shrinkage factor for c -> E in 

c d 
each cluster transformation, and is taken to be of 
the same form for all icid' One possible expres­
sion given for e(r i i ) was the pairwise transfor-
mation form c d 

(2.23) 

where E" is a small number related to E. For hard 
cores we showed that we can let E and thus E" -> 0, 
thereby completely removing the region 0 ::s R < c, 
and thus the hard-core potential, Eq. (2. 18) with 
Vo == 00. To guarantee the one to oneness of the 
transformation, we required b > c. Therefore if 
our original potential were'only the hard-core po­
tential, we could obtain a transformed Hamiltonian 
of the form Eq. (2. 17), which is Hermitian, Fourier 
analyzable and amenable to ordinary perturbation 
and variational techniques, while still being equiva­
lent to the original Hamiltonian. The new momen..; 
tum-dependent potentials p' (i>- 'gFp and the new 
coordinate only dependent potentials W have range 
b in the transformed space. Due to the regional 
nature of Eq. (2. 16) [caused by the regional nature 
of the transformation, Eq. (2. 1)] the transformed 
Hamiltonian H can easily be approximated by as­
suming n-body additivity (1 ::s n ::s N), Le., by as­
suming the probability for n + 1 and more body 
clusters to be negligible where 1'i is arbitrarily 
chosen as a compromise between accuracy and 
laborius mathematical computation. Now the choice 
of the functional form of h (and thus b lis relative­
lyarbitrary. If we solved the problem exactly (Le., 
kept all the terms), the ground state energy and the 
original wavefunction should be independent of this 
choice. However, when making approximations by 
specifying the maximum size of the clusters con­
Sidered, we expect our results to be dependent upon 
the h. Our results are therefore accurate to the 
extent that they do not involve these parameters. 
As the size of the clusters considered increases, 
we expect the dependence of our results upon the 
choice of h to decrease. 

In this article we shall remove this cluster for­
malism. Essentially our method will be equivalent 
to that of I with b == 00, h == 1 for all r space; we 
shall therefore be dealing only with the N-body 
cluster. In I we derived a continuous cluster trans­
formed Hamiltonian, Eq. (2.16). For large clusters, 
this expansion technique gave rise to prohibitively 
complex mathematical computations, resulting from 
the mixing of the desired cluster transformations 

Ai '''i a caused by the h. We shall now use a non-
I n 

cluster transformation which will eliminate the 
hard-core potential while giving results amenable 
to the calculation of many-body effects. 

3. GENERAL TRANSFORMATION 

We start with a general form for the transforma­
tion with the center of mass taken as the reference 
point (Le., the center of mass is not changed by the 
transformation), 

(3.1) 

where u is the transformation function and xa rep­
resents the center of mass coordinate of the N­
body system, 

(3.2) 

The center of mass is chosen as the reference 
point since the purpose of this method is to simpli­
fy the interparticle potentials; we do not wish to 
alter the center of mass motion. To find the trans­
formed Hamiltonian, we first need to calculate the 
derivatives hkA/axIT , the effective metricsgia"B' 
the Jacobian B, and the new coordinate depende'nt 
potential W. The transformed Hamiltonian is then 
obtained by substituting these expreSSions into Eq. 
(2.7). For strongly repulsive, or hard-core poten­
tials, we shall, as in I, choose u to be of the form 
of Eq. (2. 21) with Eq. (2.23). However, for the pur­
pose of future generalizations, we shall proceed to 
this final form of u by stages. We start by taking 
u to be an arbitrary function of the 3N transformed 
coordinates x kA' 

Consider the axkA/axZT' These terms are found 
by taking the derivative with respect to X IT of Eq. 
(3.1) for all i == 1··· N, O! == 1. 3. Applying the 
chain rule, we obtain the resulting set of simulta­
neous linear equations in the 3N variables axkA / 
aXI T(k == 1· .. N, A == 1. 3; iT fixed); 

..f.- ~ au aXkA -
ai/OaT == LJ LJ -a- ax (X ia - x ) 

k=l 1..=1 XkA IT a 

OX ia + (1 - u) ..f.- aXka 
+ u ax N LJ ax • 

IT k=l IT 
(3.3) 

Using Cramer's rule,12 we find the set of equa­
tions for the derivatives axkA/axlT to be of the 
form 

aXkA EkA IT 
- --'- (3.4) 
aXIT - D 

where D is the 3Nth order determinant of the coef­
ficie'nts of the oxkA/ax1T in Eq. (3.3) and En,lT is 
D with the kAth column replaced by the coefficients 
on the left-hand side of Eq. (3. 3) the 0iloaT' We 
write D in the form 

D == IDkA,ia I == I Cia (:;z:) I ' (3.5) 
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where dictionary ordering is used (for example, 
the ordering of the rows kA is 11,12,13,21, ... , 
N3) and Cia(axkA/axZT) is the coefficient of (axkA / 
aXlT ) in the (iCY) equation of the set of equations 
given by Eq. (3. 3). Notationally we set 

[(1 - u)/N] = U. (3.6) 

The 3Nth order determinant D is calculated in 
Appendix A. We find, Eq. (A24), 

D = u3N-4 (u + t t Xj8uj B)' 
\ J~l 8=1 

(3.7) 

The 3Nth order determinant EkA ,I T is calculated 
in Appendix B. 

XiaX jB [t 3 N 

6 (Uk A )2 - 2u 6 
+ k~l A=l k·1 

We find Eq. (B8), 

EkA,lT == U3N - 5 G(u +6_
N t xj8uj8\ (Okl- U)OAT 

~ J-1 8=1 ~ 

-XkA(U;r- U j~l Uj1] (3.8) 

Substituting Eqs. (3. 7) and (3.8) into Eq. (3. 4), we 
obtain 

1 f - XkA(u~T-ii #1 UjT)~ 
=- (Okl-U)OAT- • 

U N 3 

U + 6 6 i8 u"8 
j~l 8=1) } (3.9) 

We now calculate the effective metrics g i ajll' Sub­
stituting Eq. (3. 9) into Eq. (2. 8), we find 

E1 (U'kA l~ U1A) 

3 

+ Nu 2 6 
A=l (~, "',0 2 J( 

(3.10) 

(U + ~1 3 ) 2 z::; XIT1!~T 
T=l 

We next consider the Jacobian B = laxk,\/ax lT I . 
This 3Nth order determinant is calculated in 
Appendix C. We find, Eq. (C9), 

(3.11) 

The new coordinate-dependent potential W(r) is 
found by substituting Eqs. (3.10) and (3.11) into Eq. 
(2.9); and the transformed Hamiltonian H(r, p) is 
found by substituting this result and Eq. (3. 10) into 
Eq. (2. 7). 

For the calculation of the hard-core many-body 
problem w~ have found in I that a useful technique 
was to have the transformation function U be re­
gional, with regions determined by the smallest 
interparticle separation, namely 

1 N N 

u(r) =- I; f1 e(rcd - rab) uab(rij ), 
7 0.0=1 c,d=l 

(3. 12) 

a<b c<d 

where cd! ab 

N N 

T= I; f1 e(rCd - rab)' 
a,b ~1 c.d~l 

(3. 13) 

a<b c<J 
c <iF ab 

(3.14) 

Eq. (3. 14) was required for the continuity of the 
transfo,rmation, and the regional transformation 
function U a b was taken to be only a function of the 
interparticle coordinates r ij , since we were only 
concerned with transforming the intermolecular 
potentials. This last requirement Simplifies our 
expressions [Eqs. (3. 7)-(3. 11)] since 

~ ~ ou(r21 .. • r N(N-1») 
LJ u' - L.J 
j=l jll - j=l aXjll 

(3.15) 

== O. (3.16) 

Let us now consider the derivatives of the e func­
tions explicitly displayed in Eq. (3. 12). These e 
functions are used to specify regions in the 3N­
dimensional space. The derivatives of the e func­
tions are nonzero only at the boundary between re­
gions, Le., at some ref = rgh in Eq. (3. 12). In the 
sum over a, b we have e(ref - rgh)ugh(rij) + e(rgh 
ref)ue/ri). Now ae(ref - rg,)laxkA == - oe(rgh -
re/)/axkA . Therefore,since ugh(ri ) == uef(rij),when 
rQh = reI' terms containing derivatives of e func­
hons will cancel one another. We note that Eq. 
(3.16) was required just to effect this cancellation. 
By considering the definition of the e function [Eq. 
(2.3)], we can easily see that in the operations of 
addition, subtraction, multiplication, or division of 
functions of the regional form [Eq. (3. 12)], the re-
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suit will just be of that same regional form. Thus 
in all our expressions the 11 functions will only de­
fine regions. Equations (3.10) and (3.11) can 
thereby be written as 

1 N N 

giaj/3 =- L; n e(rcd-rab ) 
T a, b =1 c,d=1 

a < b c < d 
edt ab 

X '-- 0 0 + --'C
a
:..-
b 
__ 

, 1 . r ~ (u
2 

- 1») I (u
ab

)2 a/3 ij N 

+ 

=!. 
T 

(X ia (u ab )j/3 + Xj /3 (uab)ia) 

N 3 

U ab + 6 :6 X1T(Uab)!T 
1=1 T=1 

N 3 

X, >'), L; L; « u ",I'" )2 l k=l \=1 

N 3 
(U ab + ~ L; XlT(Uab)~T)2 

1=1 T=l 

N N 

~ , 
6 n e(rCd - r ab )(gab)iaj/3, 

a,b=l c.d=1 
a<b c<d 

cd~ab 

(3. 17) 

(3.18) 

C,fll e(rCd - Yab ) ~Uab)(3N-4) fuab 

c<d L \ 

N 
=1 L; 

T a ,b =1 
a<b 

1 = 

cd~ab 

N 

n e(rcd - rab)B ab' (3.20) 
c, d=l 
c<d 

cdtab 

where prime denotes the derivative with respect to 
rab' The Jacobian Boo [Eqs. (3.19) and (3.20)] be­
comes 

Bab = [e3N-4(rabe)']-1. (3.27) 

The calculation for the new coordinate-dependent 
potential Wab is performed in Appendix E. We find, 
Eqs. (E6) and (E7), 

where (urn )io: = aUmn lOXia' Similarly, from Eqs. 
(2.7), (2. 9), (3.18), and (3.20), the coordinate-de­
pendent potential W can be written as 

N 

W(r) =! 6 
T a,b=1 

a< b 

N n2 
n e(rcd - r ab ) 2m 

c,.i=1 
C < d 

edt ab 

X i'~1 a~=1 m:;, a!ia (gab)iO: j /3 

=! t 
T a,b =1 

N 

n e(rcd - rab)Wab , 
c,d=1 

a< b c<d 
cd'ab 

.JB

1

ab
) 

(3.21) 

(3.22) 

and the transformed Hamiltonian H can be written 
as 

1 N 

H=- 6 
T a,b=l 

a < b 

N 

=! 6 
T a,b=l 

a<b 

N 1 
n e(rCd - 1'ab) -2 

c,d=l 111 

V(r,p) + Wab\ 

'J(3.23) 
N 

n 8(rcd-rab)Hab' 
c,d=l 

c < d 
cdtab 

(3.24) 

In order to obtain more explicit results, while 
still not restricting uab(riJ to the form of the 
right-hand side of Eq. (2. 23), the expression used 
in I for the hard-core many-body problem, we 
shall now require 

(3.25) 

The calculation for the effective metric (ga b) i aj /3 

is performed in Appendix D. We find, Eq. (D5), 

(3.26) 

(3.28) 
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(~)J . 
(3.29) 

The transformed Hamiltonian II is obtained by 
substituting Eq. (3. 26) and Eq. (3. 28) or (3.29) into 
Eq. (3. 23). 

4. THE HARD-CORE HAMILTONIAN 

In this section we shall apply our results to the 
hard-core problem. The hard-core Hamiltonian 
in the original space is 

where 
Vij = 00, 

= 0, 

R i } ::S C, 

Rij> C. 

i<j 

(4.1) 

(4.2) 

As discussed in Sec. 2, and in I, the transformation 

liZ (3N-4)c 
W == - - --------,--

ab 2m [1 + (c/rao )] (3N-4)/2 

(4.3) 

will eliminate the regions of 3N-dimensional space 
in which any interparticle separation R i . is less 
than the hard-core diameter c. Therefo~e from 
Eq. (4. 2) the transformed potential Vi/r) will be 
zero. The transformation Eq. (3. 1) WIth Eqs. 
(3.12), (3.25), and (4.3) is continuous and one to 
one13 in the regions in which no interparticle sepa­
ration Rii is less than c. We shall now calculate 
the translormed hard-core Hamiltonian with the 
transformation specified by Eq. (4. 3). 

Substituting Eq. (4. 3) into Eqs. (3. 26)-(3. 29), we 
obtain 

1 [( 2c/rao + c
2

/ r2o\ 
(gab)iojB = [1 + (c/rao)]2 6aB Oij + N a_) 

+ (c/r~b)[xiax aoS(6ja - 0jb) 

+ XjllXaba(Oia - °ib)] 

+ 2C2Xiijs/r!b], (4.4) 

(4.5) 

x 
(Xaba[1+(c/rab)](3N-6)f2)_1i2 (3N-4)c2 t t _O_(X;a(1+(c/rao »(3N-6)/2) 

\: r~b(rab + c) 2m [1 + (c/rab )]<3N-4)/2 ;=1 a=1 OX ia ~ r1,(rab + c) 

1i2 (3N - 4)c 1i2 (3N - 4)c2 
=- 3- - 3(N-1)-----

2m rab(rab + c)2 2m r~0(rab + c)2 

1i2 (3N - 4)c rab 1 

2m (1 + c/r
ab

) (3N-4)/2 r~b 

fi2 (3N - 4)(N - 2)c2 
=-3 -

2m 2r~b(rab + c)2 

Substituting Eqs. (4. 4) and (4.8) into Eq. (3.23) we obtain the transformed hard-core Hamiltoman. 

1 N N {1 N 3 1 
H= - 6 n e(rCd - rab) - 6 6 Pro -----

T a,o=l c,d=1 2m k,z=l "',8=1 [1 + (c/rab l]2 
a<o c<d 

cdfab 

-3!f. (3N - 4)(N - 2)C2 1 
2m 2r~b (rab + c)2 

(4.6) 

(4.7) 

(4.8) 

(4.9) 
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1 N N [1 N 
3 1 = - L; n B(rcd - rab) - L; L; P ka [1 + (c/rab »)2 P

ka T a,b=l c,d=l 2m k=l a=l 
a < b c < d 

edt- ab 

N 3 N 3 -
C +_1_ [(2c/rab + c2/r~b)/N] L; ~ XkaXabB L; Pka PIB +- L; 6 Pka r (r + )2 Pa!J8 2m k,/=l a,8=1 [1 + (c/rab)]2 m k=l a,B=l ab ab C 

-
N 3 XkaX1B 1f2 xk8xaba ) c2 (3N - 4)(N - 2)c2 ~ 

+ Paba 2 PkB +- 6 L; Pka P -3- , (4.10) 
rab(rab + c) m k,l=l a,B=l r~b(rab + C)2 

18
2m 2r~b(rab + c)2 

where Paba is the relative momentum, Paba = ~ (Paa 
- Pba ). The transformed Hamiltonian, Eq. (4.10),is 
Hermitian, Fourier analyzable, and amenable to 
ordinary perturbation and variational techniques, 
while being completely equivalent to the original 
hard-core Hamiltonian [Eq. (4.1) with Eq. (4.2)]. 
We can now use this Hamiltonian to calculate the 
energy spectrum of the system. 

5. GROUND STATE ENERGY 

The energy of a system is given by . 
E = f !fJl(r)H!fJ (r)d 3Nr , 

!fJl (r) !fJ(r )d3 N r 
(5.1) 

where !fJ (r) is the exact wavefunction of the system 
in the transformed space. If!fJ(r) is not the correct 
ground state wavefunction then E > EG , where E G 

is the correct ground energy. In this section we 
shall consider the application of the method de­
veloped to the calculation of the ground state 
energy of hard-core systems. 

Let us first consider the isolated two-body system. 
For the ground state energy calculation, we can 
choose, as our trial wavefunction, the zero momen­
tum wavefunction in the transformed space 

!fJ (r) = const. (5.2) 

The momentum-dependent terms in Eq. (5. 1) op­
erating on !fJ(r) given by Eq. (5. 2) are zero. From 
Eq. (4.8), W = O. Therefore we obtain E = 0, the 
exact minimum energy for this isolated two-body 
system. 

Let us now consider the many-body system. For 
the ground state energy of the hard-core Bose 
system problems arise if one naively chooses Eq. 
(5.2), the zero momentum wavefunctionin the trans­
formed space, as a trial wavefunction. The mo­
mentum-dependent terms in Eq. (4.10) operating 
on !fJ(r) given by Eq. (5.2) are zero. Therefore 
substituting Eqs. (4.10) and (5.2) into Eq. (5.1) one 
would obtain a negative energy solution for the 
ground state energy for N> 2. This solution is 
obviously incorrect since the original potential is 
purely repulsive. Let us now consider the cause 
of this discrepancy. 

If our system is confined in a volume n, then 

~(R) = 0 at the walls of the container. (5.3) 

From Eqs. (2. 10) and (4.5) we therefore must re­
quire 

!fJ(r) == 0 at the walls of the container. (5.4) 

The choice of ~ (r) = const, Eq. (5. 2), with the nor­
malization condition on !fJ(r), J !fJl(r)!fJ(r)d 3Nr == 1, 
does not satisfy this condition. Therefore Eq. (5.2) 
cannot be used as a trial wavefunction for !/-(r). 

To demonstrate the importance of this point,consi­
der the contribution to the ground state energy of lV, 

Ew == f !fJt(r)W(r)!fJ(r)d 3Nr. (5.5) 

From Eqs. (3.22) and (4.8) 

Ew == - 3(3N - ~N - 2)c
2

fj2 J !fJl(r)!fJ(r) 

1 N N 
X - 6 f1 

T a,b=l c,d=l 

d3Nr 
8(r -r ) ----

cd ub r2 (r + )2 
al; ao C 

a<b c<d 
cd1-ab (5.6) 

Therefore Ew is always less than zero. However, 
let us return to W given in the form Eq. (2. 9). In 
that case we have 

1f2 N 3 
Ew == - f !fJl(r)!fJ(r) L; E IF 

2m i,j=l a,8=l 

(5.7) 

Integrating by parts we find 

- f giaj8 D-. ]j(~-.pl (r)-.p(r) -fjj\ dx ia• 

~Xja-fjj)\()Xia j (5.8) 

Using the condition !/;(r) == 0 at the boundary and 
substituting Eq. (5. 8) into Eq. (5. 7), we obtain 
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N 

- J rt;t(r)rt;(r) 6 
i,j =1 

(5.9) 

The integrand in the second term in the brackets 
is calculated in Appendix F. Substituting Eq. (F5) 
into Eq. (5. 9), we have 

x 6 ~ e(rcd - rab) -2---+-
e
-)-2 d3Nr • N N 1 J 

a,b=l c,d-1 r b (r b 
a<b c<d a a 

c d;i ab 
(5.10) 

H we now choose Ij, (r) = const [Eq. (5.2)] as our 
wavefunction, the first integral in Eq. (5. 10) would 
be zero. As before, the momentum-dependent 
terms in Eq. (4.10) operating on Ij,(r) would be 
zero. Therefore, assuming Ij,(r) to be normalized, 
we would be left wi th 

N 

X L; 
a, b 

where K is a constant. In the dilute system limit 
K"" n and assuming pair-wise additivity, we would 
have for N(N - 1)/2 pairs, E -> 21T en 2N2/mn the 
proper result. 5 In addition, we note that before per­
forming the integration by parts, the answer for 
N = 2 was E = 0, the proper isolated two-body 
scattering result. The effeCt of a different formu­
lation of the boundary conditions [Eq. (5. 3)] has 
previously been considered for the N = 2 problem.14 

From the foregoing, it appears that boundary condi­
tions are necessary and require further investiga­
tion. We note that in I, boundary conditions of the 
form Eq. (5.3) were not used; rather the Hamil­
tonian contained cutoff functions. In the case of 
the Hamiltonian [Eq. (4.10)] a procedure equiva­
lent to that of I would be to expand the trial wave­
function in a regional form similar to that of Eq. 
(2.1). The problem of regionality would still re­
main, but the procedure appears to be computa­
tionally easier than that of I and could be useful 
for calculations of the properties of medium den­
sity systems. 

6. CONCLUSIONS 

We have derived an explicit Hamiltonian which is 
completely equivalent to the original hard-core 
many-body Hamiltonian, while being Fourier ana­
lyzable, Hermitian, and amenable to perturbational 
and variational techniques. In addition, the inter­
acting particle cluster expansion used in a pre­
vious paper1 has been eliminated. By no longer 
needing to use a cluster expansion, we are no lon­
ger restricted to the consideration of dense gases, 
but can now consider true liquids. 

The disadvantages of this liamiltonian are (i) it is 
regional in that it depends upon the smallest in­
terparticle separation and (ii) it does not implicitly 
contain a cutoff function, Le., for particle i, the 
Hamiltonian does not approach the free-body 
Hamiltonian for large values of r i • This latter dif­
ficulty results in restrictions on the set of trial 
wavefunctions as discussed in Sec. 5. 

a < b c <d 
cd~ab 

(5.11) We note the following: 

a purely positive quantity. Therefore, the boundary 
conditions on ~(R), and thus on 1/-' (r), have "chang­
ed" the purely negative Ew into a positive quantity. 
The contribution at the walls of the container, which 
the boundary conditions cause to be neglected, 
would thus be highly negative if l/I(r) were taken to 
be a constant. This contribution is caused by the 
extended range, in the 3N-dimensional transformed 

(1) This method, applied to the hard-core problem 
in Sec. 4 and 5, could also be used for strongly 
repulsive but nonhard-core potentials if we 
used e(rab) = 1 + e/(t;b + E") instead of e(rab ) 

= 1 + e/ra b [Eq. (4. 3)]. The parameter E" 

would be determined, as discussed in I, by the 
shrinkage C --> E' required to make the effects 
of the transformed strong, repulsive potential, 
suffiCiently small. 

space, of the new potential. We note that for the (2) 
case N = 2, rt;(r) = const determined by the normali­
zation condition we would obtain from Eq. (5. 11), 

An alternate method of eliminating the trans­
formed hard-core potential would be to have 

(5. 12) 

= 41T e1i2/mK, (5. 13) 

the transformation shrink the system about an 
arbitrary origin instead of about the center of 
mass of the system. The transformation would 
then be given by Eq. (3. 1) without the (1 - u) 
xa; term, i.e., by 

X;a; = uxia;' (6.1) 
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The functional form of u would be unchanged 
from that given in this paper. The calculation 
of the Jacobian of the transformation, and of 
the transformed Hamiltonian is straightfor­
ward. 

APPENDIX A: CALCULATION OF D 

By definition, from Eqs. (3. 3), (3.4), 

We shall use th.e following theorem15: 

where 3r - 2 ?c O! ~ 0;6 a31'-l-exbex+l denotes the 
determiDantformed as follows: The first 3r-l- CY 

columns are taken from I aik I and the remaining 
CY + I columns are taken from I bik I with the pro­
viso that no two columns thus taken have the same 
column number; and L; denotes the sum over all 
the possible combinations. Identify (UOik BaA + ito",,,) 
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(AI) 

1 1 1 

I bSa)1 
-N 1 1 1 

(A7) =U 

1 1 1 

= o. (AS) 

From Eq. (A7) all terms inE 6.a~;'''}I-exb~~i are zerQ 
except those containing only one column of b (la). 

Therefore 

'" (Ia) bela) N 3N-l­
LJ 6.a31'-l-", ex+l = U U. (A9) 

with a[HN(ex-l))[k+N(A-l)l and xiexu'u 
with b[i+N (ex-l»)lk+N c,\-1)) , 1 :S i, k:5 N, 1:5 CY, A:S 3. Thus combining Eqs. (A3)-(A9), we obtain 

Set 

D(l) = I' a I [i+N(a-l)J [k+N(A-l)J 

(U + it) 

(u +u) 

(U + U) 

Identifying uBi!. with a~!,,) and Ii with bi~a), [1 :5 
i, k :S N), we find 

I (la) I N a ik = U , 

D(l) = u 3(N-l)(u + Nu)3 (AIO) 

(A3) (All) 
Set 

3 
D(2) = !b[i+N(ex-l)J[k'N(A-l)Jl (A12) 

(A4) 
Xll xll x11 

N 3 X21 X 21 -"21 

n n u' (A13) 
m.n~l a.t~l lOt 

XN3 XN3 XN3 

= o. (A14) 

(A5) Set 

(A6) 

D (3) = z:; 6.a31' -I-ex bu +1 ' (A15) 

From Eq. (A13) all terms in.0 6.a31'-l-ex bex+l are 
zero except those containing only one column of b. 
Consider the case where the jbth column is taken 
from b. Simplifying the determinant we obtain 
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(u + il) U x1B 
- (u + ii) u x2B 

D(3) 2N-2, 
j3 = U ujB - -

U U xjB 

ii ii xNfj 

where for illustrational convenience we have set 
j >'" 1,2, N. Identifying u15i k (1 - 15k) + xiB 15kj with 

(3) - . (3) 
a ik and u(l - 15kj ) WIth bik , 1 :::: i, k :::: N , we find 

I 
(3) I N-l-

a ik = U xiB ' (A17) 

(AlB) 

T RAN S FOR M S. I I 

U 

ii 

U 

(u + it) 

APPENDIX B: CALCULATION OF EkA.lT 

By definition, from Eqs. (3. 3), (3.4), 

o 

2477 

(A16) 

All terms in .0~a~~-I-ab~~)1 are zero except those EkA,lT = 
containing only one column of b, in particular, one 

o 
1 

o 
(Bl) 

column of il. Considering the case where this 
column is the /nth column, III >'" j, we obtain, after 
rearranging terms, 

U 0 0 ii Xw 
0 U 0 it X2s 

(3) (3) I (A19) ~a 3r' 1- aba+l m = 
0 0 

- -u u xNfj 
- -0 0 0 U xmfj 

0 0 0 ii xiB 

N-2 -C -) = U U xifj - xm/3 , (A20) 

where for illustrational convenience we have set 
j,r? >'" 1, 2,N. For m = j, 

0 

where the constant 1 is in the [k + N(y - 1)] 
column, [l + N(T - I}) row, and the matrices repre-
sented by large parentheses are the same terms as 
those in the same position in the determinant of the 
coefficients D, given by Eq. (AI). 

We separate EkA,lT into three possibilities: 

(1) k = l, A = T, (2)k>"'Z. A = T, (3) A >'" T. 

The calculations for each of these possibilities is 
performed using the method illustrated in Appen­
dix A. For possibility (1) we find 

(3) (3) I ~ a3r -I-a ba+1 = O. 
m~J 

(A21) E kA•kA = {U 3N- 4 [u + (N - Oii]) + {o} 

Summing over m and combining Eqs. (A16)-(A21), 
we find 

(3) 3N-4, fr[ (N 1)-]-
DiB = U uiB ,U + - U xjB - ii t XmB) 

mol 

mh (A22) 
3N-4 - , =u XjfjUjfj , (A23) 

Therefore summing over j, i3 and combining Eqs. 
(All), (A14), and (A23), we obtain 

( 

N 3 ) 3N-4 -, 
D = U U + .0 .0 x' B u B • 

jd fjo1 J J (A24) For possibility (2) we find 

(B4) 
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For possibility (3) we find 

_ 3N-5 _ , __ . , 

( 

N ) 
- - U X kA. ulT - UX kA. L; ujr .• 

}e1 

(B7) 

Combining Eqs. (B3), (B5), and (B7) we obtain the 
general result, 

EkA,lr = U 3N
-
5 Ifu + ~ t XJ8 U;'I3) (Okl - it) OAT L \ }=1 13=1 

l-u-~ _ Ji1 Xll~ 
, G o it - J21~l1j 

(B5) 

-X,,~,-Uj~u;1J. (BB) 

APPENDIX C: CALCULATION OF B == laxia/aXky I 
For convenience in notation we set 

N 3 

G = U + L; L; X6 U/B , 
je1 134 -

N 

·J!T = U[T -U B U/r· 
j c1 

(Cl) 

(C2) 

By definition, from Eq. (3. 9), we can thereby write 
B as 

(_ JN3~1l) 

tit -Jil;21) l-u- Jh X21 

B- (~) G 

U3N 

(_ Jl~xN3) 

This determinant is of the same form as that of 
Eq. (Al). Thus from Eqs. (A10), (A14), and (A22), 
we obtain 

(C4) 

B(2) = 0, (C5) 

B(~) = - (1 - Nu)2 JI8 f[l - (N - l)U]xj8 + it ~ xmB\ 
j j ~ m=l ) 

mf.j 

/Gu 3N (C6) 

= - (1 - Nil)3x J' /Gu 3N J 13 j 13 • (C7) 

Therefore, summing over j, (3 and combining terms, 
we obtain 

B ~ U·(3N·3) t - (C8) 

(C9) 

(C3) 

~ _ JN3 XN3) l-u-
G 

APPENDIX D: CALCULATION OF (gab);ajB WITH 
uab(rij) = e(rab) 

Notationally we set Xa = xaba' 11. = rab' e = e(rab ), 
AjB = aA/ax;i3' and A' = aA/ol1., where A is an arbit­
rary function. From Eqs. (3.17) and (3.18), 

1 \ r (e
2 
;; 1~ _ ~iae;! ~ xi8 e;a) (gab )iaj 8 = e2 ) 0aB 0ij + 

r e+L;6XITeIT 
I c1Te1 

XiaXjB t t e~~ J 
+ k=l A=l ~. (Dl) 

(e + fd E/ITeITY , 

The following relations hold: 
N 3 
~ ~ Xjf;fJB (11.) = I1.j'(I1.), 
J ~l 8=1 

N 3 

2:; 2:; fJB (l1.)gjB(I1.) = 2j'g', 
;=1 B~1 

(D2) 

(D3) 

where j and g are arbitrary functions. Therefore, 
N 3 

e + L; 6 xlrel r = (l1.e)', (D4) 
1=1 1=1 
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and Eq. (D!) becomes 

1 [ ~ (e
2 

- 1») (g ab )iaj B = e2 °aB ~ij + N 
Xiae'(X:sl,,)(o)a - alb) + xjS e'(X:o:/ II )Oia- Bib) + 2~aXjBe'~ 

(lte)' (lte)'2 J (D5) 

APPENDIX E: CALCULATION OF Wab WITH 
uab(rjj) = e(rab ) 

From Eqs. (3. 21) and (3.22), 

N 

xI; 
i, j = 1 

3 

6 
(:(.B-1 

Using Eq. (3. 26) and the notation of Appendix D with 
CB = Bab' Eq. (EI) becomes 

Jj2 
Wab = -2 - Iffi 

til 

X ,.~, 1) a:,o 0: ~"' 0" + (0' ;; 1)j 

xzae'('CB/II)(Oja - alb) + xjBe'(X:o:/II)(OiJ- Bib) 

(lie)' 

(E2) 

~)J\ 
(~ , 

~)' 

(E5) 

(E6) 

Taking the derivatives with respect to X:o: and Xi 0: , 

we obtain 

112 Iffi 1.1\' 
Wab = 3 iii (It e) (ltel' \{ffi/ 

_ 3(N _ 1) ~ Iffi e' 
m e(lte)'2 ~)' 

+ -fffi It --Ii' [1 
III 1t(lte)'2 ~n· (E7) 

APPENDIX F: CALCULATION FOR EQ. (5. 9) 

Set 

Jj2 N 3 ~o 11 ~a1ffi1 whereBisgivenbyEq.(3.27). Thefollowingrela- 1=-- 6 6 g'B - - --
tions hold: III i,j =1 o:,B=l taJ aXjS Iffi axio: 

(FI) 

(E3) 

a a d 
- --=2-
(}Xa a aXba ax: 0: ' 

(E4) 

where f is an arbitrary function. Equation (E4) is 
obtained from the transformation xao:' Xbo: -; x: a = 
xaa - x ba ' Xo: = (xao: + x bo:)/2. Using Eqs. (E3), 
(E4), and (E2) we find 

f~3 d 1 X:a (I)J Wab = 112/1/1 Iffi L; - - - -
a=l oX:o: e 2 It Iffi 

L; ~ a 1 iae 1 
[

N 3 X- , ( ~J 
i=l u=l oX;a e 2 (lte)' {ffi 

[

3 a 1 Jeae' f.l~l 
- R1 aX:a e 2 (/Le)' \Iffi} J 
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The structure of local operators linear in the creation and destruction operators of a finite number of 
particles is investigated. It is shown that these operators determine a set of local and relatively local 
free fields relative to which the original operators are local. This result is used to study local internal 
symmetries in a theory of interactions and to show that these symmetries commute with the Lorentz 
group. The assumptions of Haag and Ruelle which lead to a complete particle interpretation are also 
discussed. Asymptotic many-particle states are constructed under less restrictive assumptions. 

I. INTRODUCTION 

In this article we will first investigate the struc­
ture of a particularly simple local theory. In a 
Fock space of N free particles of mass m > 0 and 
arbitrary spins, we consider local Hermitian 
operators linear in the creation and destruction 
operators of these particles. These "one-particle 
operators" are associated with bounded regions 
of space-time in a way familiar from the local 
algebra theories of Haag and Araki, 1,2 with one 
important difference: The set of space-time 
regions to which the one-particle operators are 
localized need not include regions of arbitrarily 
small size. (For a precise description of this set 
of regions, see Theorem 1 of Sec. IlL) We show 
that a set of one-particle operators determines a 
standard set of relatively local free fields relative 
to which the original one-particle operators are 
local. This is the subject of Sec. III. 

In Sec. IV we use this re suit to analyze local inter­
nal symmetries of a type considered by Landau 
and Wichmann. 3 ,4 These authors have demon­
strated the translational invariance of such sym­
metries, and Landau has further shown that, in a 
field theory with an interpolating field 5 for each 
particle, these symmetries must commute with the 
Lorentz group. In this section we extend this 
result to the apparently more general local alge­
bra theories and field theories for which a com­
plete set of interpolating fields is not assumed. 
We also discuss the relationship of the Haag­
Ruelle theory of asymptotic states to selection 
rules. Asymptotic many-particle states are con­
structed under less restrictive assumptions. 

To establish notation, we first review the Poincar~ 
transformation properties of one-particle states. 

ll. ONE-PARTICLE REPRESENTATIONS OF 
THE POINCARE GROUP 

The representation r m s of the Poincar~ group 
(denoted g:) appropriate to a particle of mass 

m > 0 and spin s can be realized by unitary opera­
tors U(x,g) = U(x) U(g) [x a 4-vector,g in 9- == 
SL(2, e)] on a Hilbert space of (2s + 1)-component 
functions f(p) in the following way: 

(U(x,g)f)(p) = eix'PJ)S(g)f(A -l(g)p) 

x·p = tw - x.p, 

w(p) = (p2 + m 2)l/2. ( 1) 

Here DS(g) is the standard (2s + I)-dimensional 
representation (0, s) of 9- and the notation A(g)p 
means the spatial part of A(g)P, where A(g) is the 
4 x 4 Lorentz matrix. The invariant scalar 
product is 

(flh) == J~B(f,h;P)' 
where B (f,h; p) = P(p)DS(P)h(p), P = [w(P) -
p.a]/m, a!,ld the ai are Pauli matrices. Note that 
since DS(P) is a positive-definite Hermitian mat­
rix, for fixed p B(j, h; p) is a scalar product of the 
(2s + I)-component vectors f(p) and h(p). We 
also mention here that DS(g) is a homogeneous 
polynomial of degree 2s in the matrix elements of 
g and that therefore DS(P) is a polynomial in the 
components of p = (p, w). 

We will, in addition, make use of the infinitesimal 
operators of the representation U(x,g). A simple 
calculation gives the following results: 

(a) The generators of rotations and velocity trans­
formations are given by J == S + L, K = i(S - wV) 
respectively. Here S is the standard (2s + 1)­
dimensional angular momentum matrix and L = 
-ip x V . Note that S is not Hermitian relative to 
the scalar product (fIg) and hence is not the spin 
observable. 

(b) The operators Sand L are expressible in 
terms of the generators of Poincare transforma­
tions. The formula is 

m2L == p X (p x (J + iK)]- iwp x (J + iK). (2) 
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Finally we will make use of the creation and des­
truction operators appropriate to a Fock space 
description of this particle. Hence we introduce 
the operators at(p) such that if f(p) is the (2s + 1)­
component function transforming according to 
Eq. 1, then 

is the one-particle Fock space state it represents. 
Here 10) is the vacuum vector. It is then easy to 
verify the transformation'law 

s 
U(x,g)a t (p)U-l(x,g) = E eiX.A(g)Pab(A(g)p)D~ (g). 

jl o=-s jl (3) 

If the particle satisfies either Fermi or Bose 
statistics, the creation and destruction operators 
must satisfy the usual anticommutation or com­
mutation relations 

[al'(P), at(q)L = 2w6(p - q)DJfp), 

respectively. 

We introduce the free field 6 CPI' (x) transforming 
according to ns(g) as follows: 

cP (x) = f~ [at (p)e ix·P + ABa (p)B-le- ix.p ]. (4) 
I' j{,W I' jJ 

Here B is the TCP operator given by 

Baip)e-l = ~ ao(p)[ CsDsU»Ljl A *, 

where Cs = exp(- irrS2 ) and A is a complex number 
of modulus unity. If B is to act locally on ~~ (x), we 
must choose A2 = (- 1)2s. Note that B has the fol­
lowing action on the one-particle wave functions, 

(ef)(p) = [CsDS(P)f(p)]*, 

and that 

B(ef, Bh;p) = B(h,/;p), 

[U(g), B] = O. 

(5a) 

(5b) 

Sin~e CsDs(g)*Cs-l = DS(g-l)t, nst(g)ns(ij)Ds(g) = 
DS(P '), with p 1 = A(g-l)p, we find that 

and 

m. RELATIVELY LOCAL SETS OF ONE-
PARTICLE OPERATORS 

We consider a Fock space of N particles with a 
common mass m > 0 and arbitrary spins. Each 
particle is assumed to be either a fermion or a 
boson, and normal commutation relations are 
assumed for the creation and destruction opera­
tors of different particles. 

Suppose :D is a Poincare invariant class of bound­
ed open space-time regions. That is, if D EO :D 
then [A(g)D + xo] EO :D, where A{g)D + Xo is the 
region {xix = A(g)x ' + xo,x' EO D}. With each 
D EO :D we associate a set S (D) of Hermitian one­
particle operators each of which is linear in a sub­
set of the N creation and destruction operators. 
Each operator in S(D) is assumed to involve either 
fermions alone or bosons alone defining the sets 
S+(D) and S_(D), respectively; S(D) = S+(D) U S_(D). 
To insure the completeness of the description of 
the theory in terms of the S(D} we assume that the 
linear span of{ UDE::oS(D)} 10> is dense in the one­
particle Hilbert space. The operators of S (D) are 
"localized" to the region D in the following sense: 

1. U(x,g)S(D)U-l(x,g) = S(A(g)D + x); 

2. If Dl <;;;; D2, then [S.(Dl ), S.(D2)]. = O. 

(Here D' is the region spacelike to the closure of 
D.) To simplify the geometrical aspects of our 
study, we will assume in what follows that all 
regions D EO :D are of a particular kind called "dia­
monds." A diamond with vertices xl and x2 

(where x 2 - X 1 is forward timelike) is the inter­
section of the open backward light cone from x 2 

with the open forward cone from xl. Note that :D 
may consist of the Poincar~ transforms of only a 
Single diamond. 

The assumptions stated above will allow us to 
prove the following: 

Theorem 1: There exists a set of N free fields 
cpk(X}, k = 1, ... , N, of the type -discussed in Sec. II 
[cpk transforms according to DS(g), where s de­
pends on k] which satisfy 

[cpt (x), .p~(y)]. = i6kl(C;l)j.!v~O(x - y; m) 

and which are local relative to the S(D). That is, 
if Q EO S.(D) and xED', then [Q, ¢:(x)L = 0 if at 
least one of Q and ¢k are Bose operators and 
[Q, CP: (x)]+ = 0 if both are Fermi operator s. 

As we shall see later the above set of fields is 
essentially unique. Furthermore, each operator of 
S (D) is essentially a sum of fields "smeared" 
with functions with support in D. Hence the struc­
ture of the operators of S (D) is determined by 
that of a free field theory. 

In proving Theorem 1 we will want to integrate 
and differentiate quantities such as U(x,g)QU-l(x,g) 
with Q EO S (D). While only the commutation proper­
ties of these operators which follow from assump­
tions 1 and 2 above will be used, for notational con­
venience we will say that the integrated or differen­
tiated operators are members of the appropriate 
S(D). A series of three lemmas will now be given 
which result in Theorem 1. 

We first show that only one spin at a time need be 
considered. 
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Lemma 1: Suppose Q E S(D) with U(x,g)QIO) 
COO in (x,g). Then each Hermitian operator Q

k 
which occurs in the decomposition of Q into a sum 
of operators involving particles of spin j(k) is 
also in S (D). 

Pruuf: We introduce the polarization 4-vector 
operator Wk = (1/2m).0EkIPZPzJpz' (Here Pz and Jpz 
are the usual generators of translations and 
Lorentz transformation.) The operator WZ == 
.0 WkWk has the property that for a one-particle 
state 1/1 of spin j and mass m, [WZ + j(j + 1)]1Jt = O. 
The action of WZ on Q is defined by the appropriate 
repeated differentiations of U(x,g)QU-l(x,g). For 
example, 

(PIJpq)(Q) = (i :>.. i :>..' U(x,g)QU-l(X,g~ ,,'=,\=0' 

where U(x,g) = exp(- iAPz)exp(- i>..'Jpq ). Since this 
operation is local, i.e., for R E S(D1 ) and Dl c;: D' 
[WZ(Q), R]± = 0, we have WZ(Q) E SeD). With Q == 
6~1 Qk and Ok = j(k)[j(k) + 1], we note that 

( 
m, W 2 + Uk) 

Qi = PI elk - 0i (Q), 

where the prime sign indicates that the factor con­
taining the index i is to be omitted. Hence Q i E 

SeD). 

We now consider one of the Hermitian operators 
Qk in SeD) (hereafter called Q) involving only par­
ticles of spin 8. Poincare invariance allows us to 
transform D to the special form Dr == {x I II X II + I t I 
< r} for some r. The operator Q can be written 

n s d3 
Q == 6 6 J 2![aJ(k,p)fjJ(k,P) + ajJ(k,p)f;(k,p)]. 

k=1 jJ--S 

Here at(k, p) is a creation operator for particle k 
as disc"ussed in Sec. II and [aik, p), aZ(l,q)]± = 0 
for k "" 1. We use the notation J;(p) == {f-s(i, p), .. " 
/.(i,p)}, f(P) == {f1 (p)," 'fn(p)},and D(g) for the 
[(28 + 1) x n]-dimensional matrix whose elements 
consist of n matrices DS (g) on the diagonal. Thus 
.t:(p) and f(p) are respectively (28 + 1)- and 
[(28 + 1) x n ]-component column vectors. Without 
loss of generality, we will assume that the fi(p) 
are linearly independent vector-valued functions of 
p. [If there are m < n linearly independent fi (p), 
we "rename" the particles by choosing bJ(k, p) == 
~;=lat(l, P)f.l1k with unitary B. For a suitable chOice 
of f.l (he new wavefunctions f;(P) = 6~=1 f.li}Jl(p) will 
satisfy.f;,'(p) == 0 for i > m, the remainder being 
linearly independent.] Note that by virtue of the 
differentiability assumption in Lemma 1, the 
fjJ (k, p) are in the function class S. 

We want to establish the result that f(p) is the re­
striction of an entire function J (P) of the 4-vector 
p to Po = c,v(p) such that the x- space Fourier trans­
forms of](p, w) + J(p, - w) and of 17(P, w) -
J(p, - w)]/ w have support in II xII ,,;; r. These facts 
and certain other results of an algebraic nature 
will be needed to establish Theorem 1. 

Hence consider the function 

which by assumption has compact support in x at 
t == 0 along with all its derivatives with repect to 
x and g l' With F 1 and F 2' respectively, the Fourier 
transforms of [iata'(x; g l' g Z)] to and [a'(x; g l' g Z)]t =0 
we calculate 

B(U(gl)f, U(gz)f;p) = F 1(p;gl,gZ) + wFZ(P;gl,gZ) 

== A(P;gl,gZ)' (6) 

where 
n 

B(U(gl)f, U(g2)f;p) == I;B(U(gl)fk , UCffz)fk;p)· 
k=1 

Note that A(P;gl,gZ) has the following two 
properties: 

1. It is t;,.he restriction to P 0 = c....'(p) of an entire 
function A(P;gl,gZ) of the 4-vector p; for example, 
A(P;gl,gZ) = F 1(p;gllgZ) + PoFZ(P;gllgZ)' This 
is also true of all derivatives of A(P;gllgZ) with 
respect to gl' [For brevity, functions of the 3-
vector p which are restrictions to P 0 = w(p) of 
entire functions of the 4-vector P will sometimes 
be called entire functions of P .] 

2. ~0.r re!-; P and Po == w, }. satisfies the reality 
condItIon A (P;gllgZ) = 'fA(- P;gllgZ)' These 
properties of A can be used to prove the following: 

Lemma 2: (a) The functionf(p) == f(p, w), 
where J(P) is an entire function of p. 

(b) A suitable renaming of the n particles can be 
carried out to give for the n new wavefunctions 
[again denoted fi (p)] and for real p: fO(p) = 
etrrsJ(- p,-w). Here the abbreviationfo (p) == 
e- trrs.[ CD(jj}f(p)]* has been introduced. 

The proof of this lemma has essentially been 
carried out by Epstein.7 We present a somewhat 
different proof: 

Let a be the algebra of all polynomials in the 
representatives of the generators of the Poincare 
group. For each p let 'O(p) be that subspace of 
[(28 + 1) x n]-dimensional complex space equal to 
{af(p)} [Le., 'O(p) = {wlw = (Rf)(p),R E an Sup­
pose M == maxp [dimension of 'O(p)]. We note the 
following important facts: 

1. If RllR z E a thenB(RJ,Rzf;p) is an entire 
function of P . 

2. WecanchooseRl' ... ,RM E awithR;I,.= 1 
such that the Gram determinant G(p) = det[B(RJ, 
Rjf;p)] does not vanish identically. [Note also 
that G(p) ~ 0 for real p.] 

3. Equation (2) implies that w\l E a. Statements 
1, 2, and 3 then imply that, for p real and G(p) "" 0, 

a(RJ)(p) M 

aP
k 

= ~ (Rjf)(p)a!i (p). (7) 
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Here ati (p) can be calculated by Cramer's rule in 
terms of the inner products B(wvkRJ, R/;p) and 
B(R;f,R/;P! and is seen to equal [wG(p)r 1 x (an 
entire functIOn of p ). 

Substituting a2(R/)(p)/apJJp,. = a2(R/)(p)/apkaP I 
and noting the linear independence of the column 
vectors (R/)(P) at real points p for which G(p) > 
0, we derive the integrability conditions 

aak(p) _ aal(p) = [ak(p), a l (p)] 
aPt aP k 

(8) 

for all pOints p E C3 for which w(p)G(p) '" O. The 
matrices ak(p) are analytic at least at these points. 

The analyticity properties of the solutions of dif­
ferential equations such as Eq. (7) (total differen­
tial equations) with coefficients satisfying (8) are 
well known 8,9: In any simply connected neighbor­
hood (real or complex) of a point Zo where the a k 

are analytic, the equation has a unique solution 
(with given initial conditions). This solution is 
analytiC in this neighborhood and has an analytic 
continuation along any path of analyticity of the 
coefficients. 

To determine additional analyticity properties of 
f (p), we will make use of finite Lorentz transfor­
mations. Choose a polycylinder Co' centered at 
Po = Po * , in which w(z)G(z) '" O. We solve the DE 
there to get a function F(z) analytic in Co and 
equal to f(p) in R o, the intersection of Co with the 
real space. Let us assume that the particle wave­
functions f 1 (p), .. ·.In (p) are linearly independent 
(as vector-valued functions of p) in Ro. [If this is 
not so, we arrange a renaming of the particles so 
that there are n', n' < n, linearly independent!; (p) 
in R o, the remainder being zero in R o'] Since 
F(p) == f(p) for p E R o, the equation 

B(U(g)F, F; p) = A(p;g, 1) == A(p;g) (6') 

holds for all g in some real neighborhood N(l) of 
the identity and all p in some real neighborhood 
R1 of Po' 

We will now use Eq. (6') to show that in fact F(z) 
can be analytically continued along any path z(t) 
which begins at Po and does not pass through the 
surface w(z) = O. Hence suppose F(z) is analytic 
at all points z(t), 0,,; t < t1 • We will show that 
F(z) is also analytic at Z(t1)' We choose go E N(l) 
and a ne~hborhood N(go) of go with N(go) s;;;. N(l) 
such that 

(a) Iw(A-1(g)z(t)~1 > 0 for 0,,; t,,; t1,g E N(go), 

(b) I G(A-1(g)z(t» I > 0 for 11 - E ,,; t,,; tv 

g E N(go) with an E> 0 which depends on go and 
N(go)' 

Such a choice is possible because the condition 
G(A-l(g)Z(tl» = 0 for all g in a real neighborhood 
of the identity implies that G vanishes in a com­
plex neighborhood of the identity and therefore 
that G(z) vanishes in a complex neighborhood of 

Z(tl)' [Note that A-1Z is the spatial component of 
A-1(Z, w(z», where the value of w(z) depends on the 
path taken to the point z. J Let J(z;g l' ... , ge)' 
{3 = (2s + 1) x n, be the matrix whose rows are the 
vectors Vi == [D(gi )F(A-l(gi )z*)]*. Let us now 
choose a set of (3 elements gi E N(go) such that det 
J(z;gl>'" ,gal 7- 0 for z in a neighborhood of z(ft}. 
This choice is possible for the following reason: The 
vanishing of det J(Z(tl);gl' •.. ,ga) for all gi E 

N(go) is equivalent to the statement that the Vi do 
not span the (3-dimensional space no matter how 
the gi are chosen in N(g 0); i.e., there is a nonzero 
vector V orthogonal to v(g) == [D(g)F([A-1(g) 
z(il)]*)]* for aUg E N(go)' But vTv(g) is there­
fore zero in a complex neighborhood No of go. We 
choose U E SU(2) and gl such that A-l(gl)Z(tl) = O. 
Then,ifg-1 = h-1g 1ug1-1, hE No,we have vtv(g) 
= 0 for all U E 5U(2). A short calculation then 
shows the Fi *(z*) to be linearly dependent in a 
neighborhood of A-1(gO)z(t1)' Continuing back to 
Ro gives the linear dependence of the fi(p) in R o, 
contradicting our assumption that they are linear­
ly independent in R o. 

We will now use Eq. (6') to show that F(z) is analy­
tic in a neighborhood of z(t1)' We choose a path 
wet) such that (a) wet) coincides with p and Z(t1 - E) 
at its end points, (b) wet) is close enough to z(t) for 
o ,,; t ~ t1 - E so that it can be continuously dis­
torted to z(t) without crossing any singularities of 
F(z), and (c) for 0 ~ t,,; t1 - E, !G(A-1(gi)W(t»! > 
0, i = 1, ... ,f3. With these three conditions met, 
we can continue the equations 

along w(t) to Z(t1 - E), resulting in the same F(z) 
as would have been obtained by continuation along 
z(t). [Note that conditions (b) and (e) can easily be 
met, for example, in the following way: First 
choose a polygonal path which approximates z(t) 
well enough to satisfy (a) and (b) and whose com­
ponent line segments neither begin nor end at 
zeroes of G(A-1(gl)Z) for any i. If for each 
straight path segment wk(t) we choose a linear 
parametrization, G(A-1 (gi )wk(t» is analytic in t 
and hence wk(t) can be distorted infinitesimally in 
the tcomplexplane to miss the zeroes of G(A -1 (g;)z), 
i = 1, ••• , (3. The new path will satisfy (a), (b), and (c).] 
Then the Eqs. (6") can be continued further from 
Z(tl - E) along z(t). If A(z) is the column vector 
whose components are A (z; gil, we thus obtain the 
representation 

(9) 

in a neighborhood of Z(tl)' This shows explicitly 
that F(z) is analytic in this neighborhood. By re­
peated application of this argument we see that no 
singularities can appear on the path z(t). The 
monodromy theorem then shows F(z) to be analy­
tic in any simply connected domain not containing 
pOints of the surface w(z) = O. 

We now go on to examine F(z) in a neighborhood of 
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a point Zo on this surface. We can easily choose 
gj E N(I), i == 1, .. " [3, so that w(A-1(gi )zo) ;e 0, 
det J(zo;gl' ... ,gB) "'- 0, and so that the A-1(g)ZO 
lie in a neighborhood of a single point zl contain­
ing no points of the surface w(z) == O. Note that 
J(z;gl"" ,gB) can be written as J 1(Z;gl' .. , ,gB) + 
w(z)J 2(Zig1' ... ,ge)' where the J i (z) are analytic 
in a neighborhood of ZOo Again Eq. (9) gives an ex­
plicit representation for F(z) in a neighborhood of 
zp' This representation shows two things. Firstly, 
smc-e all curves z(t) which encircle -m 2 twice in 
the Z2 plane can be continuously distorted to lie 
arbitrarily close to Zo without crossing w(z) ::: 0, 
we have F(z) == F 1 (z) + w(z)F 2(z), w.here Fi (z) is 
single valued and analytic for w(z) "'- O. Secondly, 
Eq. (9) gives an explicit representation for the 
Fi (z) in a neighborhood of zo, showing that they are 
analytic there. Since Zo is arbitrary, the F j (z) are 
in fact entire functions. 

To complete part (a) of the lemma, it remains to 
show that the branch of F(z) resulting from a con­
tinuation along a real path from Po is in fact equal 
to f(p) for all real p. To accomplish this, we will 
demonstrate the equality on all real straight lines 
emanating from Po' Suppose p(t) == Po + P1t is 
such a line. Then along p(t) Eq. (7) reduces to an 
ordinary linear differential equation in t. The co­
efficients are analytic functions of t in a neighbor­
hood of the real axis except at the zeroes of G(p(t)), 
and hence F(p(t)) == f(p(t» for t '" 0 up to the 
nearest zero of G(p(t». We now consider the solu­
tion to the original DE [Eq. (7)] in a neighborhood 
of a point on the line between this and the next 
zero of G(p(t». This solution, H(z), has the same 
analyticity properties as F(z) and H(p(t» == f(p(t)) 
between the first and second zeroes of G(p(t)). 
But. since H(p(t)) and F(p(t» are analytic at the 
first zero and, since f(P(t)) is infinitely differen­
tiable, we have equality of all derivatives with 
respect to t of Hand F at the first zero. Hence 
H(p(t)) == F(p(t» == f(p(t)) for t? 0 up to the second 
zero of G(p(t». Repeating this argument, we reach 
any point on the line in a finite number of steps. 
This completes the proof of part (a) of the lemma. 

We now derive the connection between the two 
branches of the functionf(p) == ](p, w) which is im­
plied by A*(P;gl,g2) == 'I' A(-Pig1,g2) for real 
p and Po:::: w. Let f(p) = J(- p,- w) and hlp) ::: 
[CD(P)J(p)]* for p real. Note that since D(P) is a 
homogeneous polynomial of degree 2s in the maj:­
rix elements of p:::: [w(p) - P'u Jim, we have D(- p) == 
(- 1)2SD(p). We now consider Eq. (6). We continue 
both sides around the branch point z2 == - m 2 in 
the z 2 plane and back to the real domain, and then we 
replace the argument p by - p. (These operations 
correspond to the variable transformation p -? - p.) 
We thus obtain 

If we now take the complex conjugate of this equa­
tion and make use of the above property of A and 

the relations (5), we obtain the result 

B(U (g l)h, U(g 2)h; p) == '1'(- l)2sB(U(g 1)f, U(g 2)f; p). 

(lOa) 

Setting g, = 1, we find that for f to be nonzero we 
must have the usual connection between spin and 
statistics. 10 Setting g21 == g-1 v(p)uv-1 (p) (u E SU 
(2) and vip) the boost to momentum p] and noting 
the linear independence of the functions DIiSu(u) , we 
conclude that 

n n 

E hi(P)hi t(q) == E f, (P)f i t(q). 
i4 ;01 

(lOb) 

Since the fi(p) are linearly independent, (lOb) im­
plies that in fact 
1; (p) = E~ olYijh .(p) with Y a unitary matrix. From 
this and from the definition of hIp) we find that 
y*y = 1 and hence that y has the representation 
y = [3{3T with [3 unitary. A renaming of the par­
ticles with the unitary transformation f3 leads to 
part (b) of the lemma for the new wavefunctions 
fl(p) = (3-1j(p). 

In terms of these new wavefunctions [which we 
again call fi (p)] and new creation operators [again 
called aJi t(k, p)], Q can be written 

n S d 3 
Q == E E J 2~ {aJi t(k, p).fJl(k,P) 

k41J0-s 

+ ali (k, p)[ CsDS (P )]k(- P) ]Ii} Po ow 

n s 

== E E Jd3X(¢~(x)J;,1(k,x) - at~k(x)~2(k,x)]t.o, 
k4 II o-s 

(11) 

where here f(p) has been expressed as P(p) -
iw(p)j2(p), with the fi (p) entire functions of p, and 
where Ji is the Fourier transform of ji. T.he field 
¢k(x) is given by Eq. (4) with at(p) replaced by 
al(k,p). Note that,by virtue of part (b) of Lemma 
2, the fi(p) are in the function class S when con­
Sidered as functions of the real variable p. We 
shall next prove the following: 

Lemma 311 : The functions f,}(k, x) have support 
in 11 xII ~ Y, where r is the radius of the base of the 
diamond Dr' 

This means that the operator Q commutes (or anti­
commutes, depending on s) with the fields cf>k(X), 
k = 1, ... , n, for x spacelike relative to the region 
Dr' Equation (11) shows that Q depends only on the 
field variables inside Dr' Note that because the 
fields satisfy the Klein-Gordon equation, Q is ex­
pressible in terms of the field variables at t = o. 
To prove Lemma 3, we first estimate 

for certain (gl,g2)' (Here Dk is a kth derivative 
with respect to x.) Let I) be a pure velocity trans­
formation in g.. Suppose E > 0 and let g E ') be 
such that 11 A(g) - I \I < E/..f2. (Here Il MIl2 = Tr 
MtM.) We set gl = I)g, g 2 :::: 1)-1, and 'Y = Aoo( v). 
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From the fact that U(x)Q 10> is C«> in x, we easily 
derive the inequality ck(gl,g2) < CNk(E}y-N for 
every N and every k. Via locality, a simple calcu­
lation shows that [Dk~(Xigl,g2)]t 0 vanishes for 
II xII > 2yr

E
, with r

E 
== r(1 + E}, leading to estimates 

on the Fourier transforms F;(P;g1,R2}: 

II zlik IF;(ZiR l' g 2} I < CNk(E} "),-Nexp(2"),rE II ImzlI ) 
(12) 

uniformiy in g whenever II A(g) - III < El/2. 
Letting e be a real unit vector and Po a real 3-
vector perpendicular to e, we define f(z) "= f(ze + Po). 
Denoting X == (pi; + m 2)l/2, we see that f(z) is ana­
lytic on a two- sheeted Riemann surface with 
branch points at w(z) "= (z2 + x2)1/2 == O. We cut 
the z plane along the imaginary axis from iX to icu 
and from - iX to - iCU. We first want to show that, 
for any nonnegative integer k, II zkf(z)11 < ck exp 
(rEllmzl). Hence we choose {3 == (2s + 1) x n ele­
ments gi E: 'J with II A(g;) -II! < E/-fi so that J(z) "= 
J(ze + Poig l' ... , gB) has a determinant which 
does not vanish identically as a function of z. We 
next choose two circles (one on each sheet) cen­
tered at z == 0 with equal radii greater than X and 
such that on these curves det J(z) has no zeroes. 
Let e denote the union of the two circles. We now 
consider velocity transformations v in the e direc­
tion, and, since these do not change Po' we write 
z(v)e + Po == A(v)(ze + Po). Since A(A(go)PiJ?"ogl, 
ROg2) == A(P;gl,g2)' Eq. (6) implies that 

B(U(gi)f, U-l(v2)f;p) == A(A(v)p; vgi , V-I), 

or, when written in terms of the matrix J, 

j(z(v2» == D(v2)[J(z)D(z)}-IA(z(v», (13) 

where D(z) "= D(q), q == (ze + Po' w(z», and A(z(v)) 
is the column vector with components A(z( v); 
vRi , v-l).With W == z(v2) we easily calculate 2"),z(v) == 
i1! + z, and therefore the estimate (12) results in 

II (w 2+ z) kf(w) II < C;ME}y-N exp[rEI Im(w + z) I] 
'Y (14) 

for z on the "double circle" e. Here we have used 
the fact that II D(v 2 )11 "),-25 is bounded. This gives 
the result 

(15) 

for all w which can be reached from some z on the 
double circle e with a real velocity transforma­
tion. That these w in fact make up the whole two­
sheeted Riemann surface can be seen by direct 
calculation or by the following argument: We con­
sider the real 2-vectors P == (Rez, Re(z2 + X2)1I2) 
and q == (Imz, Im(z2 + X 2)112). Since the invariant 
I(z) ==p.p + q-q == Iz2 + A21 - Izl2 varies in the 
interval [- X2, A2] and since p.p == (I + A2)/2 and 
q·LJ == (l - A 2)/2, P and q are respectively timelike 
or null and spacelike or null. Hence the real 
velocity transformations preserve sgn [Re(z2 + 
A2)1I2] (and therefore the sheet structure) and sgn 

(Imz). It is not difficult to see that all points z 
with the same value of the invariants are related 
by a real velocity transformation. The demonstra­
tion is then completed by noting that each curve 
described by a fixed value of the invariants has an 
intersection with one of the circles. {These curves 
are the hyperbolas (1 + t)1I2lmz == ± [(1 - t) 
(Rez)2 +(1- t2)(X2/2)]1I2 for t"= [/X2 in the inter­
val (- 1, 1] and the lines ± Imz ~ A, Rez == O.} We 
then have Eq. (15) for all wand hence the fi(we +Po) 
also satisfy Eq. (15). This is just the condition 
which insures that 

JOO dp ji(pe + P ) eiPx == 0 for Ixl >re • 
-00 0 

Since this holds for arbitrary e and Po, integration 
over all Po perpendicular to e gives Ji(xe) == ~ for 
I x I > re and all e. Since E > 0 is arbitrary,Ji(x) == 
o for II xii > r, which establishes Lemma 3. 

Thus the operator Q of Eq. (10) determines a set 
of fields relative to which Q is local. We would 
now like to show that two different operators, Q1 
and Q2' of the same type as Q, determine relatively 
local free fields. Thus suppose 

n1 S 

QI == E E J ~~ [a1(k, p)fik , p) + all (k, p)fll*(k, p)], 
k cl j1 c_ S 

nz s 

Q2 == 'PI j1~5 J ~~ [bL(k, p)hj1(k, p) + bll(k, P)h:(k, p)], 

with [aik, p), bW, q)L == Ek1DJJP)2wll(p - q). Here 
Ekl is an ni x n2 matrix. As was shown in Lemma 
2, the particle creation operators can be selected 
so that the wavefunctions fk(p) are linearly in­
dependent and satisfy f6(p) == e trrs J(- !" - w), f(p) == 
I(p, w). The same applies to the hk(p). The analog 
of Eq. (6) for the function 

~ 12(x;gv g 2) 

is 
== [U(x,gl)Q 1U-l(x,gl)' U(g2)Q2U- 1(g2)t 

B(U(gl)f, U(g2)Eh;p) == A 12(P;gl,g2)' (6"') 

where (Eh)k(P) == E~o; Ek1hz(P) and where A12 has the 
same analyticity and reality properties as the 
function A(P;gl,g2). The analog of Eq. (lOa) is 
therefore 

( lOa') 

leading to 

n1 

L; «E - E*)h)k(P)J1(q) == 0, 
kel 

(lOb') 

which implies E == E*. This is just the condition 
that the fields constructed from the "a" creation 
operators are local relative to those constructed 
from the "b" operators. It also guarantees that 
the "b" fields anticommute or commute with Q1 
when these fields are at a point x spacelike 
separated from the region of localization of Q1. 
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We have thus demonstrated that the set of all 
Q E {~:oS (D)} which also have the property that 
U(x,g)Q/O) is Coo in (x,g) determines a set £ of 
relatively local fields which are also local rela­
tive to those Q. It is now a simple matter to con­
struct the standard set of fields referred to in the 
theorem.12 Choosing Ns linearly independent crea­
tion operators bJ (k, p), k = 1, ... ,Ns ' of spin s 
from those associated with fields in £, we note that 
(Olbj.l(k,p)b!(l,q) I 0) = 2w6(p - q)Dtv(,lJ)Mkl , where 
.W" is Ycal, symmetric, and positive definite. If we 
choose ct(k, p) = 61b1(l, p)atk and construct fields 
q;k(x) from these new creation operators, we obtain 
fields that are local relative to this set of Q's if 
and only if a is real. Since under this change of 
creation operators M ~ M' = atMa, we can 
achieve M' = I with a ~uitable real a. This gives 
the standard set of fields referred to in the 
theorem. We finally show that these fields are 
also local relative to Q E SiD) for which 
U(x,g)QIO) is not ccoin (x,g). The proof goes via 
a limiting process: Let Qn = jd 4xdg fn(x,g)U(x,g) 
QU-l(x,g), wherE fn (x,g) is a sequence of real. non­
negative Coo functions with compact support b." 
converging to the point (0, 1) .with Jd4xdgj~(x,g) == 
1, it is easy to see that -Qn I 0) converges strongly 
to QIO). If h(x) E S has support inD',then for 
large enough n, < 01 (Qn' q;k (h)]± I 0) = O. [Here 
¢,k(h) == jd4x <p~(x)h(x).] Therefore, [Q, <l>a(h)l{= 0 
arid the proof of Theorem 1 is complete. 

We conclude -this section with a few remarks. We 
first note that the creation operators used to con­
struct the N fields are unique up to a real orthogo­
nal transformation. That is, if the equation 
VC i(l"p) V-1 ==E/ci(l,p)Vzkdefines a unitary opera­
to!1 which comfuutes with the Poincare group and 
whichsatisfiesVIO) = 10),thenthefieldsVq;k(x)V-1 
are local relative to the SiD) if and only if the matrix 
Vlk is real. Another way of stating this is also of 
interest: The abbreviation fO(p) used in Theorem 1 
actually defines an antiunitary TCP operator when 
the !,(p) refer to the standard creation operators 
c~(k: pl. We see thatthe set of operators GS(D)e- 1 is 
local relative to the fields in the region [- D]'. With 
this definition of 0, V¢k(X)V-l is local relative to the 
SiD) if and only if [e, VJ == 0. 13 ,14 

Secondly, we remark on the simple representation 
(11) for the operators Q E S(D). This representa­
tion, with P(x) = 0 for /I xII > r, has been shown to 
hold for those Q E S(Dr ), Dr = {x III xII + I t 1< r}, 
for which U(x,g) QIO) is Coo in (x,g). For a 
general operator Q E S(Dr) the differentiability 
condition need not hold; we only require that Q 10) 
exist. In this case the vanishing of the tempered 
distributions [Q, ¢k(X)]± for x E D~ still implies 
Lemma 2 for wav/functions fi(p) which may now 
grow like a power of p in the real domain; hence 
the representation (11) no longer applies. Lemma 
3 can be replaced by the statement that the Fourier 
transforms of P(p) andf2(p) are tempered distri­
butions with support in II xII ~ r. 

N. APPLICATION TO FIELD THEORIES AND 
LOCAL ALGEBRA THEORIES 

A. Asymptotic Fields 

We consider algebras of local operators 5'(D) 
associated with diamonds D. These might be the 
polynomial algebras of a field theory associated 
with bounded regions of space-time or Haag-Araki 
algebras of bounded operators.1,2 Considered as a 
vector space, 5'(D) is spanned by the two subspaces 
5' (D) containing Fermi and Bose elements, respec­
ti~ely. The observables of the theory are, of 
course, contained in the 5' _(D). Locality is intro­
duced by assuming that, for D 1 ~ D 2 , 

[5' ±(D1 ), ff ±(D2 )J± == 0, 

[ff'f(D 1 ), g:±(Dz)L == o. 
(16) 

Note that, in field theory, Eq. (16) contains the 
statement of normal statistics which in this case 
involves no loss of generality.IS We now assume 
that the theory is asymptotically complete so that 
there are Fock spaces of "incoming" and "out­
going" particles each of which is in fact equal to 
the entire Hilbert space. The creation operators 
are denoted alx(i, p), where i collectively denotes 
spin and particle type and "ex" means "in" or 
"out." If the aL(i, p) are defined so that 

(Olacx(i,p)abJi,q)IO) = o;J6(p- q), 

then for each operator Q in 3'±(D) and each particle 
mass the formula z 

Qex == ~fd3p[<Olaex(i,P)QI0)aJx(i,p) 
i 

defines a certain one-particle operator. For a 
fixed D, the set of all such Qex is denoted g: ± eX(D). 
The sum is over all particles of a given mass m 
and hence 5'ex(D) depends implicitly on the mass 
of the particles involved. Landau has shown4 that 
the 5' eX(D) satisfy the locality properties assumed 

± . . 
for the S±(D) in Sec. III. Hence, restnctmg our 
further attention to theories with a minimum mass 
> 0 and at most a finite number of particles at 
each mass, Theorem 1 implies the existence of a 
relatively local set of asymptotic fields ¢~x(x) 
which are local relative to the 5';,x(D). 

B. Local Internal Symmetries 

Following Landau and Wichmann, :1,4 we call a 
unitary operator V a local internal symmetry if 
vi 0) = 10) and if for Dl ~ D2 we have, in analogy 
to (16), 

[V5' ±(D1 )V-1, 5' ±(D2)]± == 0, 

[V5'", (D 1 )V-1, 5'±(D2 )L= O. 
(18) 

Under these assumptions [U(x), V] = 0, as was 
shown in Ref. 3. Furthermore, Landau has shown, 4 

using the Haag-Ruelle construction, 16, 17 that V 
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commutes with the S matrix and that 

Va~x(i,p)V-l ::: E abx(j,p)'Uj;(p). (19) 
) 

In a field theory, with the additional assumption of 
the existence of an interpolating field for each 
particle, Landau was able to show that 

[U(x, g), V] == 0 
and 

(20) 

(21) 

Here the t/J~x(x) are suitably chosen asymptotic 
fields associated with the interpolating fields and 
J{ is a real orthogonal matrix. We will now derive 
(20) and (21) without assuming the existence of 
interpolating fields. Equation (21) will then be true 
for the asymptotic fields cp~x(x) discussed in Sec. 
IVA above. 

We first note that the assumption (18) coupled with 
the result of Landau mentioned in Sec. IV A shows 
that for Dl <; D2 the vacuum expectation values of 
the expressions 

[Vg:~X(Dl)V-l, g:~X(D2)]± 

and [Vg:~X(Dl)V-l, g:~X(D2)L 

both vanish. The problem is thus reduced to one 
involving one-particle operators alone. Let us 
choose a set of creation operators c~ex(k, p) trans­
forming according to Eq. (3) and such that CPJl~x(x) 
is linear in cJex(k, p) and its Hermitian conjugate. 
If Eq. (19) is rewritten in terms of these creation 
operators, then the matrix 'O(p) is replaced by a 
matrix which we denote K(p). In order to examine 
K(p), we choose Ql' Q2 E g:lX(D) such that for each 
spin the particle wavefunctions J;(p) [relative to the 
cJex(k, p)] associated with Q1 1 0) are linearly in­
dependent, and similarly for the hj(p) associated 
with Q 210). Furthermore, we require that Q; 10) 
contain all the different types of particles of mass 
m and half-integer (or integer) spin and that both 
U(x)QII0) and U(x)Qi I 0) are Coo in the variable x. 
We then consider the function 

ff(Xjgl,g2,g) == (01 [U(x,gl)Qiu-1(x,gl)' 

V(g)U(g 2)Q2U-1(g 2)V-l(g)J± I 0), (22) 

where V(g) == U(g)VU-1(g) is also a local internal 
symmetry. If we fix E > 0 and require 1\ A(g.) -
III<E' for i == 1, 2, then ff(X;gVg2,g) == o for 'x 
spaceUke relative to a fixed diamond D~, uniformly 
in g. In p-space this leads to the statement that 

where A(P;gl,g2,g) is an entire function of p satis­
fying 

II pllkIA(p;gl,g2,g) I < Ck(E) exp(QI.1I Impll) (24) 

with Ql
E 

and C~(E) independent of g. The Hermitian 
form BU, h; p) has the same meaning as in Eq. (6) 

except that a sum over spins is also understood. 
Considering along with the expressions (22) the 
corresponding expressions obtained when Q1 E g:~x 
and Q 2 E g:~x, we see that both integer and half­
integer spins can be assumed to be represented in 
/ and h. Note also that V(g) in (23) corresponds to 
the matrix K(p;g) == D(g)K(A-1(g)p)D-1(g). The 
construction of matrices of the type J(p) as in Eq. 
(9) from Lorentz-transformed/'s and h's allows 
us to invert Eq. (23) to get 

K(p;g) == [J 1(p)D(P)]-1A(p;g)[J~ (p))-l, (25) 

where J;(p) and J 2(P) are constructed respectively 
from (U~gl)f)(P) and (U(g/)h)(p) and where 
Aij(p;g)::: A(P;gi,gJ,g). Sincef(p) and h(p) are 
entire functions of p, Eq. (25) shows explicitly that 
K(p) is a metamorphic function of the 4-vector p. 
A suitable choice of the gj and g; can remove any of 
the zeroes of the denominator, which means that in 
fact K(p) is an entire function of p. We now con­
sider the growth of K(p) for complex p. As in 
Lemma 3, we examine K(A-1p) for p == ze + Po' We 
choose a double circle ~ in the z complex space of 
radius greater than (P5 + m 2) 112 on which det J l(z) 
and det J 2 (z) have no zeroes. For z E: e, the in­
equality (24) gives 

1\ K(ze + Po;g)1I < c. (26) 

We choose g to be a velocity transformation [I of 
velocity v along e and define y = Aoo( [I). Since 
II D( [I) II y - S is bounded, we have 

II K(we + Po)11 < c'y2s, (27) 

where w == z(v-1 ) == y[z - vw(z)). Since, for large 
w, v must be near 1 and z - vw(z) cannot be near 
zero, we have 

!lK(we + po)1I < c"(1 + Iw\2s). (28) 

This means that K(we + Po) is in fact a polynomial 
in wand w(w).18 An argument given by Landau4 

then suffices to show that V commutes with the 
Lorentz group. A variant of this argument will be 
outlined here for the reader's convenience: We 
first note that the unitarity of V is reflected in the 
equation 

(29) 

and hence, since Defy) = D2(1I(- p), where lI(p) E g 
is the boost to momentum p, that r(p) == D-l(v(p)) 
K(p)D(v(p») is a unitary matrix. Let p = A(g)(O, m), 
where g is'the velocity transformation coshx + 
sinhxe-u. Since A(g) and D(g) are polynomials in 
the matrix elements of g and g* ,for fixed e the 
matrix r is a polynomial in A == eX and A -1 = e- x • 

But since r must remain bounded as A varies in 
o ( ,\ < <Xl, it is in fact independent of A. Setting 
A == 1 gives rep) == K(O). We now apply the same 
argument to K(P;g) with the result that D-l(v(p) 
K(p;g)D(v(p)} is also independent of p. If g = v(q), 
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we can choose p = q in which case the latter ex­
pression becomes K(O). This shows that for g a 
velocity transformation K(pj g) = K(P). But since 
the velocity transformations generate g-, we have 
K(pjg) = K(p) for allg E g-; i.e., [U(g), V] = O. 

Finally, we take U E SU(2) and note that K(O; u) = 
D(u)K(O)D-1(u) = K(O) implies that K(p) = D(l/(p» 
r(p)D-1(l/(p» = K(O) == JC. Hence K(p) = JC is a 
unitary matrix which acts only on the particle in­
dices and d~es not mix particles of different spin. 
The closing remarks of Sec. ill then suffice to 
show that JC is a real matrix and thus to complete 
the demonstration of the Eqs. (20) and (21). 

C. Haag-Ruelle Theory 

In the discussion of local internal symmetries the 
Haag-Ruelle construction of asymptotic states 
was needed to relate the action of V on the one­
particle states to its action on the many-particle 
states. [See the derivation of Eq. (19) in Ref. 4.] 
We first want to point out that the method of Haag 
and Ruelle 16,17 rests on an assumption which is 
not entirely appropriate in a study of the possible 
symmetries of a local theory: It is assumed16,17 
that pure one-particle states can be constructed by 
letting Quasi-local operators19 Q act on the 
vacuum. This means that quasilocal operators Q 
can be found such that the states Q I 0) are eigen­
states of the mass operator. In certain situations 
this supposition follows directly from the assumed 
mass spectrum: Suppose that the particle in ques­
tion has mass m > 0 and that Em and E(J.l.2) project 
onto the subspaces withp2 = m 2 andp2,o;; J.l.2, 
respectively. If m 2 is an isolated point in the 
spectrum of P 2, then it is easy to find the required 
quasilocal Q.20 For REg: (D) satisfying EJt 1 0) ;e 

0, the operator R(x) = U(x)~U(- x) can be suitably 
smeared with a functionf(x) E S to give a quasi­
local Q = J d4x R(x)f(x) satisfying Q 10) = EmQ 10>= 
RIO>. However, it may be the case that m is in the 
mass continuum of some many-particle states. In 
this case one might try to justify the Haag-Ruelle 
assumption in the following manner: Any con­
tinuum contribution to the support of dE(1J.2) in a 
neighborhood of m 2 should correspond to states 
with "quantum numbers· different from those of 
the particle in question; otherwise the particle 
would not be stable. At this point, one might argue 
that in a "reasonable theory· there ought to exist 
local operators carrying the appropriate quantum 
numbers. For example, if these quantum numbers 
were associated with a compact local internal sym­
metry group, then local operators carrying definite 
values of these quantum numbers could be con­
structed from arbitrary local operators (by means 
of the Haar integral, for example). We could then 
choose a local operator Q which carried the quan­
tum numbers of the particle in question. This 
operator would satisfy dE(J.L2)(1 - Em)Q 10> = 0 in 
an interval around m 2 , while EmQ 10) ;e O. By 
smearing Q(x) as before, one would arrive at a 
quasilocal operator satisfying the assumption of 
Haag and Ruelle. 

In view of this close connection of the Haag-Ruelle 
assumption with the symmetries of the theory, we 
feel that a better understanding of these sym­
metries could result if asymptotic states could be 
constructed without making this assumption. 

In a theory of strong interactions we are no 
doubt justified in assuming that E(J.l.2)(1 - Em) is 
continuous in a neighborhood of rn 2 (for all par­
ticle masses rn). This is just the assumption that 
particle masses have no point of accumulation. If 
one makes a slightly stronger assumption concern­
ing the smoothness of E(J.L2)(1 - Em)Q 10), then, as 
we shall show, it is possible to carry out the Haag­
Ruelle construction of asymptotic states. Specifi­
cally we assume that, for each particle mass In, 

operators Q i E 3' ±(D; ) can be found such that 

(a) EmQ;IO);eO, 

(b) E(~) (1 - Em) Q; I 0) is Holder continuous at 
m 2 {Le., there exist €.;, OJ, and c; all greater than 
zero such that, for I J.L2 - m 2 1 < 0i' 1/1; == (1 - Em) 
Q i I 0) satisfies 

II[E(~2) - E(m2)] 1/1;11 < c j 1 J.L2 -m 2 1£i}. 

If, furthermore (for each mass m , the Poincare 
transforms of i.E m Q; I O)} span the one-particle 
sub-Hilbert space, asymptotic Fock spaces can be 
constructed. We note that although the Holder con­
tinuity condition is a considerable relaxation of the 
Haag-Ruelle assumption, it may not be phYSically 
motivated and hence our result should be consi­
dered provisional. 

The idea of the construction is to use quasilocal 
"creation operators" Q jUi , t) at finite times t, 
which, as t -. ± ~,have a mass spectrum "con­
verging" to the point m. This enables us to con­
struct a dense set of collision states. Details ar~ 
given in the Appendix. 
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APPENDIX 

Suppose that, for i = 1, ... ,n, Q i E g: ±(D j) satisfies 
the conditions (a) and (b) of Sec. IVe with m re­
placed by mj. Let h(s) be a real COO function of the 
real variable s with compact support and with 
h(O) = 1. We choose n Coo functions fj(P) of the 
4-vector P with compact support inSide the forward 
light cone and define 

QjUj, t) = J d4p Qj{P)fj(P)h(s{P2 - mn2} 

x exp{i[Po - wj(P)] t}, 

where Qj(P) is the Fourier transform of Qlx), 
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W j(p) == (p2 + m 7)1/2, and s == s( t) is a function (to 
be specified later) which increases with t. 

The main tool used in the construction of asymp­
totic states is a generalization of a spacelike 
cluster property proved by Ruelle l7 : Let (0 I Rl 
(Xl) '" Rn(xn) I O)T be the truncated vacuum ex­
pectation value of the product of operators R j(x i), 
with Rj(O) E g-±(D j ). Let, furthermore, !(s;Y l ,"" 

Yn) be the Fourier transform of a function in S 
n 

multiplied by jI]l h( s(p2 - mr)2). Then for some 

N 0 ~ 0 the function 

g-(S;Xl"" ,xn) == j l'1l d4Yi !(SiYl"" ,Yn) 

x(OIR l (Y1 +x1)"'Rn(yn+~)IO)T 

satisfies the inequality 

IDkg:(SiXl"" ,xn)1 < CNk d-N(lsIN/2+No + 1) 
(A1) 

with d = maxi,jll Xi - xjll. Hence Dk is any mono­
mial in the derivatives with respect to the Xi andN 
is an arbitrary nonnegative integer. The proof will 
not be given since it involves only a straightfor­
ward generalization of Ruelle I s estimates. Note 
that the inequality (A1) might be expected since 
the function h(S(P2 - rn2)2) contributes an (s)1/2 
"spreading" in coordinate space. 

We now investigate the convergence of the vector 
lJ;(t) == Ql(fl' t)··· Qn(fn' t) I 0), where the !/p) 
are chosen "nonover lapping in velocity space" 2 1 i 
that is,for all i '" j,ifPjE SUPP!i andP j E supp!j' 
then p/wj(P i) '" p/wj(Pj)' Expanding IIdlJ;(t)/dtll 2 
in truncated vacuum expectation values gives a 
sum of products of N-point functions. We first 
consider an N-point function where N ~ 3 and 
which involves no operator Qi which has been dif­
ferentiated with respect to t. Mter a renumbering 
of the operators, the N-point function can be 
written 

f 
N -
i~2 d3pi F (S;P2"" ,PN) exp{i[wl(Pl) + ... 

+ w",(Pm) - wm+l(Pm+l) -'" - WN(PN)] t}, 
(A2) 

where F(s;x2 ,"',XN ) :::=(01 Qi(s;O)Q~(S;-X2)'" 
Q;"(s;-Xm)Qm+l(s;xm+l )"· QN(S;XN) 1 O)T and 
Qi(s;x) :::= jd4P Qi(JJ)f;I'p)h(s(JJ2 - ml)2)e- iP•X • 

Note that, in (A2), Pl + ... + Pm == Pm+l + ... + 
PN and that 1:5 m < N. The estimate (A1) then 
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shows that if DI is an lth derivative with respect 
to P == (P2' ... , PN), then for some No 
IIpll k IDIF(S;P2"" ,PN)I< Ckl(lsIU2+N~ + 1). 

(A3) 

If we now take S == 1 t 1 2-( with 2 ~ E > 0, repeated 
integration by parts in the expression (A2) shows 
(see Ref. 21) that it is bounded by C kit I-k for any 
k ~ O. Note that this bound remains valid when 
one or more Q i (fi , t) are replaced by their time 
derivatives; the differentiation only results in the 
replacement of h(s(JJ2 - m?)2) by i(P 0 - wi) X 

h(S(P2 - ml)2) + (d/dt)h(s(P2 - ml)2). 

We now conSider the two-point function. The 
assumption of Holder continuity is easily seen to 
imply that if E < 2EJ(1 + Ei ), s = 1 t 1 2-( , then 
for some (3j > 0 

Hence, for appropriate E, each two-point function 
is bounded, and the terms in the expansion of 
II dlJI(t)/dt 112 containing products of two-point 
functions only is bounded by cit 1-2-[, with 0 > o. 
Thus 1/1 (t) converges strongly. An argument simi­
lar to that given by Hepp20 establishes the Lorentz 
frame independence of the construction. The exis­
tence of asymptotic Fock spaces is thus demon­
strated. Note that it is sufficient to consider only 
sets of functions fj(P) with nonoverlapping sup­
ports in velocity space because the linear span of 
the vectors constructed using such functions is 
already dense in Fock space. 2,2l. 

We remark finally that once the convergence of 
1/I(t) to lJ; has been demonstrated as above, it is no 
longer necessary to choose s(t) as we did. In fact 
suppose J.l(t) is any function of t satisfying 

(a) 11(t) ~ + oc as t ~ ± 00, 

(b) for some a> 0, 1 t 1 O(J.l(t)/t2) ~ 0 as t ~ ± 00. 

Then it is easy to see that if c{J( t) is constructed 
exactly as 1j;(t) above except s(t) is replaced by 
J.l(t),we have II c{J(t) -lJ; (t) II ~ 0 as t~ ± 00 and 
hence c{J(t) converges to the same vector as lJ;(t). 
Although we will not demonstrate it, this fact can 
be used to prove strong convergence without the 
restriction to fi(JJ) which are nonoverlapping in 
velocity space. 
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The classes oftrajectories of charged particles, for which the radiation reaction force vanishes, in 
curved spaces are examined. The trajectories in the Robertson-Walker cosmologies are given in 
detail and it is shown that the only reaction-free geodesic trajectories are those at rest relative to the 
local matter density. 

I. INTRODUCTION 

The question of which classel' of trajectories of 
charged particles in a curved space are free of a 
radiation reaction f9rce is an old one in general 
relativity. We examine this question through the 
use of the conformal symmetries of Maxwell's 
equations in cases where the metric is taken as 
given. 

A reaction-free trajectory shall be defined as one 
for which the radiation reaction force, as originally 
defined by Dirac, vanishes. We have chosen to 
study radiation from this aspect to avoid global 
problems such as the structure of infinity. The 
meaning of this condition in flat space has been 
widely discussed in relation to the problem of a 
uniformly accelerated charged particle. 1 From 
these discussions it is clear that this radiation 
reaction formalism and definitions of radiation 
as a nonvanishing Poynting vector at infinity are 
not unambiguously equivalent, and also that the 
definitions at infinity themselves suffer from 
problems. 

We have done detailed analysis of the structure 
of the reaction-free trajectories for the cases of 
Robertson-Walker cosmologies, where the analysis 
is somewhat simplified due to their conformal 
flatness. 2 These models, although simple, are of 
considerable interest as they represent a close 
approximation to the large scale structure of the 
universe as observed. 3 

We have shown in the Robertson-Walker cosmo­
logies that the only reaction-free geodesics are 
those followed by particles at rest relative to the 
local matter density. 

II. CONFORMAL STRUCTURE 

Maxwell's equations4 for the field Fllv ' current jll' 
and metric g IlV are given by 

(1) 

F[IlV; A.J = F[IlV, A.J = 0, (2) 

where square brackets mean antisymmetrization, 
"; " covariant derivative with respect to gJ:v, and 
", " ordinary derivative. The metric is taKen to 
have signature - 2. 

Under a conformal transformation 

Maxwell equations are invariant if we take 5 

We can then define the densities 

where g = determinant gllv and 

.J-!t=04..j_g. 

We then have 

and Eq. (1) reads 

which gives the conservation law 

JV = JV = 0 • v ,u 

and thus gives the total conserved electric charge 
Q as 

which is seen to be a conformal invariant. 

This means that under a conformal mapping cur­
rents that represent point charges with charge qi 
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Under a conformal transformation 

Maxwell equations are invariant if we take 5 

We can then define the densities 

where g = determinant gllv and 

.J-!t=04..j_g. 

We then have 

and Eq. (1) reads 

which gives the conservation law 

JV = JV = 0 • v ,u 

and thus gives the total conserved electric charge 
Q as 

which is seen to be a conformal invariant. 

This means that under a conformal mapping cur­
rents that represent point charges with charge qi 



                                                                                                                                    

E L E C T ROM A G NET I C R A D I A T ION INC U R V E D SPA C E S 2491 

and trajectories ZI! transform into cuyrents Ihal 
also represent cha~ges qi and trajeclories Z~. It 
is important to note that in general the trajecto­
ries so associated do not represent the same phy­
sical situation, as many physical parameters used 
to describe a trajectory are changed. 

An important property of conformal transforma­
tions of the metric is that, as they locally leave 
the direction of time unchanged and leave the light 
cone invariant, retarded or advanced solutions of 
Maxwell's equations will remain such under them. 

m. CONFORMAL M<YrIONS 

The covariance of Maxwell's equations under con­
formal transformations of the metric is closely 
related to their invariance, like all zero rest mass 
fields, under the group of conformal motions of a 
space. 6 The conformal motions7 of a space V4 are 
the group of automorphisms of V4 onto V4 that do 
not change the angle between two directions at a 
point. For an infinitesimal transformation 

X'a = xa + ~ a(x), 

this is equivalent to 

~gpv == cp(x)gjlV' (3) 

where £ is the Lie derivative with respect to ~a. 
fa 

A vector field that satisfies (3) is a conformal 
Killing vector and (3) is the conformal Killing 
equation. Expanded out, (3) reads 

~1l;V + ~v;1l - cpgllv = 0 

and contracting with gjlV on (4) gives 

cp = ~~o;o 

If we define the quantity 

gjlV == g jlv/(- g)1I4, 

then (4) can be written as 

£ gjlv = O. 
fa 

As gjlv = 9 Il
V

' we can see that conformal Killing 
vectors are invariant under conformal trans­
formations of the metric. 

Conformal motions can be characterized by a 
class of curves, conformal circles. If for the 
curve Zjl(s), where s is an affine parameter, and 
its "unit tangent vector" 

va == dZ
a == Za 

ds ' 

we define 

vnV a == E =: 
\ 1 
)-1 

(4) 

u"'== EVa + bPi; va + pavo - EPPV vova (5) 
P ° ° P , 

then the equation u a = 0 defines a conformal 

circle. In (5) 

where R"pwois the Riemann Christoffel tensor 
and our sign convention is given by 

It can be shownB that for ~ a to generate a con­
formal motion, it is necessary and sufficient that 
it take conformal circles into conformal circles. 

If we perform a conformal transformation of the 
metric gJl" . ., r22gpv' then for a timelike curve 
ZP (s) we have a new proper time s and9 

We also have 10 

From these a straightforward calculation gives 

In flat space the timelike conformal circles are 
the curves of uniform acceleration. In any empty 
space (Rllv = 0) they are the curves with constant 
first curvature and vanishing second curvature, 11 

and are generally called geodesic circles. This 
definition of geodesic circles holds also in spaces 
where R JlV '" 0 but then the two types of curves are 
distinct. Geodesic circles are the trajectories that 
Rindler 12 has identified as the uniformally acceler­
ated trajectories in a curved space. 

Congruences of conformal circles are generated 
by the orbits of some conformal transformations. 
For timelike conformal circles, if Wil is our con­
formal Killing field, then define UP such that 

VIlV == 1. jl 

Then Eq. (4) for WI' gives, using va;B va = 0, 

a == a, IlVIl = cp/2, 

VIl;vVV == vJl = - l/a(a;Jl - QVp }' 

vil =,- l/a(ll'; pv vV - a1l
p } 

Putting these conditions into Eq. (5) and setting it 
equal to zero, we get that the necessary and suf­
ficient condition for a cunfurmal Killing field tu 
generate a conformal circle is 

1. ll' vV - ~R vV = v (-.!ll' vOvP - ~Rpavavp) ll' ;jlV JlU Jl ll' :po .' 

For flat space the group of conformal motion has 
15 parameters and in the standard representation 
the generators are divided up into the group of 
translations (four parameters), the homogeneous 
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Lorentz group (six parameters), the group of scale 
transformations (one parameter), and the group of 
uniform accelerations (four parameters).l3 

The translations and the uniform accelerations 
both contain timelike infinitesimal generators 
and it is easy to show that these generators satisfy 
the previous conditions. 

IV. THE RADIATION REACTION 

The electromagnetic radiation reaction terms in 
an arbitrary given curved space were first cal­
culated by DeWitt and Brehme14 in 1960 using 
bitensors and were recalculated by Hobbs 15 in 
1968 using a vierbein formalism. The Hobbs re­
sult differs from DeWitt and Brehme due to a mis­
take discovered by Hobbs in their work. We will 
use Hobbs result, which is consistent with the con­
formal structure of Maxwell's equations while the 
result of DeWitt and Brehme is not. 

DeWitt and Brehme and Hobbs both calculate the 
radiation reaction force for a single point particle 
by generalizing Dirac's classic paper 1 6 to curved 
space-times. As in Dirac's work, the total elec­
tromagnetic field F as at a point near t~e source 
is broken up into several terms. F'ix~t IS a formal 
retarded solution for the given source distribution 
and Fadv is the corresponding advanced solution. 
Theseaferms are then used to define 

F = Fin + Fret: Fout + Fadv as - as as ab as , 

F : '!'(Fret + Fad v) as 2 as as , 

Frad = Fret _ Fadv as - as as , 

F Iree = .!.(Fin + Fout) - Fin + .!.Frad as - 2 as as - as 2 as 
- Fout _ .!.Frad - as 2 as , 

F - F-free + F-
aR - as as' 

Fin Fout Ffree and Frad are singularity free at 
, , '- d f M the source while F as' F~~t, and F~s v sa tis y ax-

well's equations for the given source. 

These fields are expanded around the Singular 
source to get their expressions on a world tube 
constructed about it. They expand T/.IV' ~he Max­
well stress energy tensor, in terms of F as and 
Ffree and use TIlV. = 0 to obtain equations of as ,v 
motion. This procedure involves at the end a 
renormalization to kill the divergent terms. 

The results of these calculations of Hobbs 17 for a 
particle with trajectory ZIl(S) and charge e with 
c = 1 are 

F~~d = te(i sZ a - Z si) + ~eRayty is 

-~eRs tyt +el°O ds - s')fcxsyZYlts ' Y a -00 

eF~Z6 + ~e2(.i;" + Z"ZBZ S ) + te2RcxyZY 

- '!'e 2Z R zszy + e 2zBf" ! ZY'(s')ds' 
3 a By -00 aB)" 

where dT) = 8 (T) - 8 (T'), 

8 (T) = { 
0, 

1, 

T<O 

T> 0' 

and f is a bitensor that is zero in flat space but 
Jasy, . al th G ' occurs in curved spaces as In gener e reen s 

function for the vector wave equation is nonzero 
not only on the light cone but also inside it. The 
integral term is generally called the tail term. 
Some comment is necessary on these results. 

In the calculations of DeWitt and Brehme and 
Hobbs formal retarded and advanced fields are 
writte~ down for an arbitrary space. These fields 
at a point depend only on the source distribution 
inside the past or future light cone of the point. 
But it has been shown by Penrose1 8 that if there 
exists a particle horizon in space, purely retarded 
solutions to Maxwell's equations do not exist for 
general source distributions, and, if there exists an 
event horizon, the same is true for advanced solu­
tions. Thus unlike the case in flat space the field 
F~B is not completely at our disposal. 

Also unlike in flat space the radiation reaction 
term is not given completely by F~~d, but has a 
contribution in the tail from a term that in flat 
space is totally divergent. It is perhaps remark­
able that it is just this additional term that gives 
us an equation of motion that depends at least 
formally only on the past behavior of the particle 
and not also on its future. 

Rohrlich has suggested the introduction of an 
already renormalized Lagrangian for Maxwell's 
equations so as to avoid divergent terms from the 
beginning.1 9 If this is slone, the radiation reac.tion 
term is just given by ZSF'ix~d. Thus the equatIOn 
of motion obtained is somewhat unsatisfactory, 
being completely noncausal, not only in a "small 
region" as is true even in flat space, but over all 
space-time. 

We can use conformal covariance to obtain infor­
mation about the tail term. If the advanced and 
retarded potentials are unique, then Ji'radcxS = 
n-4 FradaS and it is easy to calculate that 

UaS : ~e[(ZSza - ZSza) + MyzY ZS, 

- ~RS ZYza] = n 4D as. 
Y 

Thus 

eJ"" ds - s')f~S ZY'(s')ds' 
-oc Y 

= n+4 eJoo €(s - s')!cx,SZY'(s')ds' 
-00 Y 

and is only a function of the conformal curv-
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ature. Since we can take n = 1 for 5' > 5, the 

I s fscx,ZY'(s')ds' also depends only on the confor-
-00 Y 

mal curvature. 

We therefore have that the tail is zero in confor­
mally flat spaces, where there is, of course, no 
problem about the uniqueness of retarded and 
advanced fields. Hobbs has also obtained this 
result by direct calculation.20 

Equation (6) shows that it is only the tail term 
that preuents confurmal circles from being the 
curues of vunishing radiation reaction. For some 
conformal circles the tail term may vanish sepa­
rately, but its general complexity prevents its 
evaluation except in the most elementary cases. 
It has been shown for example, by DeWitt and 
DeWitt, 21 that the tail term vanishes for a par­
ticle at rest in a weak static field. 

V. ROBERTSON-WALKER COSMOLOGIES 

We will take the Robertson-Walker line element 
in the form 

where 
o.dxidxj 

du 2 = 'J ___ . _, 

[1 + tkOijXiXJ)2 
k = { O. 

± 1 

In this metric form letting r2 = 0ijxiX j , we get22 

Roo = 3S"/S, 

R11 = R22 = R33 = - 1 (SS" + 2S'2 + 2k), 
[1 + -tkr2)2 

where 

S' == dS 
dt, 

6S" 6S'2 6k 
R =- +-- +-

S S2 S2' 

o S" S'2 k P -p -- -----
00 - 0 - S 2S2 2S2' 

P _ P _ P _ _ [s'2 + k] 
11 - 22 - 33 - 2[1 + -tkr2)2' 

pl _ p2 _ p3 _ [s'2 + k] 
1 - 2 - 3 - 2S2 • 

Therefore, for timelike trajectories, we get for ua. 

u O = vO + vr v yVo + vO(1 - vOvo)(P8 - Pl), 

u i = iii + v Yv yVO + vivOvo(Pi- pS), 
where 

S" S'2 k 
(Pi - pSl = s - S2 - S2' 

We first look at the conditions that 

S" 5'2 k 
- ----=0. 
S S2 S2 

(7) 

This implies dldt (S" IS) = 0 and thus 

S" =- CS (8) 
and 

CS2 + S,2 + k = O. 

On the other hand this set of equations implies (7). 
In the Robertson-Walker metric, Eqs. (7) are just 
the condition that a space be of constant curva­
ture C.23 

That is, 

R J.lvpo = - C(gJ.lPgvo - g/logvp)' 

As all spaces of constant curvature can be put in 
the Robertson-Walker form at least locally, we 
have the theorem that all conformal circles are 
geodesic circles in spaces uf cunstant curvature 
and it is only in these cosmologies for which this 
is true. 

We have therefore proven that all geodesics in 
spaces of cunstant curvature are reaction-free. 

For cosmologies where P8 - Pi '" 0 then the 
radiation reaction force can vanish for geodesics 
only if 

Vi = 0, 

1- vOvo = O. 

That is, V/l = 01). These trajectories are just the 
streamlines of the fluid which is the source for 
the Robertson-Walker metric. 

We thus have the result that for Robertson­
Walker cosmologies of nonconstant curvature the 
only reaction-free geodesic trajectories are those 
that are at rest relative to the local matter 
density. 

This result can be understood as a consequence of 
the existence of an absolute time and an absolute 
rest frame in these Robertson-Walker cosmo­
logies, unlike the cases of spaces of constant cur­
vature, where there exists the full ten-parameter 
isometry group, and thus a full generalized 
Lorentz group. 

Besides geodesics, another class of curves of 
interest are those generated by timelike Killing 
fields if they exist. There are three nonflat 
Robertson-Walker cosmologies of this type. Two 
are the static cosmologies (S' = 0 and k = ± 1) 
and the third is the de Sitter universe (S' '" 0) 
which is also of constant curvature. 23 

In the first two '.!ases the Killing field is given by 
WJ.l = o~ so that the curves are the already dis­
cussed reaction-free geodesics. 

In the de Sitter case, k = 0 and S2 = e 2 at/b. The 
Killing field is not everywhere timelike, so it is 
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not strictly stationary but is classified as such 
by many. The field is given by 

W O =a, 

and its associated curves have" unit tangent 
vectors" 

vO =b/(b2- e 2t1b r2)l/2, 

vi = - xi/(b2 - e2t1b r2)1/2. 

* This work was in part supported by NSF grant GP 8850 and 
NASA grant NGR 33-023-018. 
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force. 
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1. INTRODUCTION 

In this paper we consider gravitational fields which 
have as source a neutrino field. 1 We impose the 
restriction that the energy flow vector of the neu­
trino field with respect to an arbitrary observer 
u a, defined to be Tabub in terms of the neutrino 
energy tensor 1 Tab' be a timelike or null vector; 
Le., 

T~Tcbuaub ~ 0, (1. 1) 

for all timelike (unit) vectors u a• The condition 
(1. 1) immediately implies2 that 

(1. 2) 

so that the field has nonzero energy density with 
respect to all observers. 

The geometrical effect of assumption (1. 1) is to 
impose strong restrictions on the principal null 

congruence1 (pnc) k a of the neutrino field, namely 
that it be geodesic and shear-free: 

ka:bkb = 0, [k~a J2 = 2k(a~bfa;b, (1. 3) 

as was shown in an earlier paper. 3 In constructing 
the general line element it is natural, in view of 
the work of Robinson and others4 to choose a co­
ordinate system (u,r,x,y) = (x 1,x2,x3 ,x4 ) based 
on this particular congruence. with respect to 
which 

(1.4) 

By virtue of (1. 3) we can further specialize the 
coordinates to that the line element assumes the 
form 

ds 2 = - ~GGdzdz + 2(kadx a)[dr - HVdz - ~Wdz 

- U(kbdx b)], (1. 5) 
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have as source a neutrino field. 1 We impose the 
restriction that the energy flow vector of the neu­
trino field with respect to an arbitrary observer 
u a, defined to be Tabub in terms of the neutrino 
energy tensor 1 Tab' be a timelike or null vector; 
Le., 

T~Tcbuaub ~ 0, (1. 1) 

for all timelike (unit) vectors u a• The condition 
(1. 1) immediately implies2 that 

(1. 2) 

so that the field has nonzero energy density with 
respect to all observers. 

The geometrical effect of assumption (1. 1) is to 
impose strong restrictions on the principal null 

congruence1 (pnc) k a of the neutrino field, namely 
that it be geodesic and shear-free: 

ka:bkb = 0, [k~a J2 = 2k(a~bfa;b, (1. 3) 

as was shown in an earlier paper. 3 In constructing 
the general line element it is natural, in view of 
the work of Robinson and others4 to choose a co­
ordinate system (u,r,x,y) = (x 1,x2,x3 ,x4 ) based 
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By virtue of (1. 3) we can further specialize the 
coordinates to that the line element assumes the 
form 
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where 

kadx a = du - ~(Jdz - ~Qdz, z = x + iy, 

as was shown by Robinson.4 The function U which 
is real, and G, W which are complex, depend on all 
the coordinates, while the complex function Q is 
independent of r. The coordinate r here is an 
affine parameter along the pnc. 

If, in addition, the congruence k a is twist-free, one 
can choose the coordinate u to be constant on the 
corresponding family of null hypersurfaces so that 
ka = Ii ~, which entails 

Q = O. (1. 6) 

In Sec. 2 the restrictions which are imposed on the 
Ricci tensor due to the presence of the neutrino 
field are derived. The further simplification of the 
line element (1. 5) depends on whether or not the 
pnc of the neutrino field has zero expansion. In 
the expansion-free case, which is discussed in 
Sec. 3, the pnc is necessarily twist-free and the 
neutrino field represents pure radiation. 5 Par­
ticular solutions in this class have been described 
by a number of authors. 5- 7 The general line ele­
ment in the case of nonzero expansion is described 
in Sec. 4. The solutions of this class in which the 
pnc is twist- free have b.een given previously. 7 

The twisting solutions, however, are new to the 
best of the authors' knowledge, and establish the 
existence of combined neutrino-gravitational fields 
in which the neutrino field does not represent pure 
radiation. In the Appendix, a summary of the cal­
culations leading to the twisting line element is 
given, using the Newman-Penroses formalism. In 
order to increase their applicability, these calcu­
lations are given in a form which includes as 
special cases, the general algebraically special 
vacuum gravitational field whose repeated pnc 
(which is necessarily geodesic and shear-free) is 
twisting,4 as well as a wide class of combined 
electromagnetic-gravitational fields,9 although 
these are not dealt with explicitly in this paper. 

2. NEUTRINO FIELDS AND THE RICCI TENSOR 

A neutrino field in curved space-time can be des­
cribed by a 2-spinor field 1>A{xa) which satisfies 
the field equations 10 

proved that the energy tensor assumes the form 11 

Tab = Akakb + B[ 4k(an b) - gab 1 + 2Ek(am b) 

+ iEk(amb)' (2.3) 

with 

AB - EE~ 0 (2.4) 

in terms of the adapted null tetrad. The quantities 
A, B, and E are defined12 in terms Of the neutrino 
field and the null tetrad; in fact B is proportional 
to the twist w of the neutrino pnc: 

B = - 21> 1> w. (2.5) 

The gravitational field equations 

(2.6) 

in terms of suitable units, thus impose the follow­
ing algebraic restrictions on the Ricci tensor: 

Rabkakb=Rabkamb=Rabmamb= 0, (2.7) 

<C:::=:::> 

and 
R~ = O. (2.8) 

These conditions, together with (1. 3), have two 
important consequences. First, the neutrino prin­
cipal null direction i,pnd) k a must be a repeated 
pnd 13 of the gravitational field, which is thus 
algebraically special. This is a straightforward 
application ofa result due to Kundt and Triimper,14 
Secondly, the dependence of the metric tensor 
components and of the neutrino field on the affine 
parameter r along the pnc is completely deter­
mined. 

3. NONEXPANDING PNC 

If the expansion of the pnc vanishes, then it 
follows 15 that the twist also does. Equations 
(2.4) and (2.5) then give E = 0, and the energy 
tensor of the neutrino field reduces to 

(3.1) 

(2.1) Consequently, the field equations (2.6) further 
restrict the Ricci tensor by 

We introduce a spinor dyadS {OA, LA} in space-time 
with OA chosen to be parallel to 1>A: 

(2.2) 

where 1>(x a) is a complex function. The corres­
ponding null tetrads {ka,na,ma,m a) is thus adapted 
to the neutrino field in the sense that k a = 
aaAA' 0 A 0 AI is tangent to the pnc of the neutrino 
field. 

For a neutrino field subject to (1.1), it has been 

which, together with (2.7), (2. 8), (1. 6), and the 
neutrino field equations enable us to reduce the 
line element (1.5) to the form 

ds 2 = -idz dz + 2du[dr - ~W(dz + dz) - U du], 

where 
oW 

U =K +r ax' 0= oW = oK 
or or' 
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and the real function W must satisfy 

The metric tensor and the neutrino field are 
related by the differential equation 

a2K + a2K + [2W ~ + aw _ ~J (aw)_ (a~2 ax2 ay 2 ax ax au ax ay) 

=-~A, (3.2) 

where 

A = 2/'P a (j) _ (j) a cp _ icp (j) a w\ \( au au ay)' 

and the neutrino field function cp, defined by (2.2), 
is an arbitrary function of u alone. This result 
was obtained by a straightforward application of 
the Newman-Penrose8 formalism. Alternatively 
it could be obtained by appropriately specializing 
the line element of Kundt. 16 

We note that the Weyl conform tensor is of 
Petrov-Penrose13 type {31} or {4}, or is zero, the 
last two possibilities occurring if and only if W 
satisfies a2 w/az Z = O. In this case, W can be 
transformed to zero, and the line element des­
cribes plane-fronted gravitational waves with 
parallel raysI6 together with a neutrino radiation 
field. Further, (3. 2) can be integrated to 

K = - ~ A zz + F(z,u) + F(z,u), 

since A is now a function of u alone. This class of 
solutions has been given by Audretsch and Graf. 5 

4. EXPANDING PNC 

In this case, Restrictions (2.7) and (2.8) on the 
Ricci tensor, together with (1. 3), determine the 
r-dependence of the line element (1. 5) as follows: 

GG = p-2(r2 + ~2), W = Wo - r ~~, 
(4.1) 

U = uo + r a (InP) + [mr + (M - fJ)~)(r2 + ~2)-1. au 
In addition, the neutrino field equations (2.1) 
imply that 

cp = - f(r + i~)-l. (4.2) 

The functions ~,P, m, M, UO which are real, and 
Wo, f which are complex, arise as "constants" of 
integration and are thus independent of r. They 
cannot however be assigned arbitrarily; in fact, 
~,uo, WO, and M are determined by P and Q. In 
order to describe these relationships it is con­
venient to introduce the following differential 
operators: 

a a a 
Dl = au' D3 == Q au + 2 az' D4 = 153 , 

Then we have 

2i~ = P2(Dii - D4Q), 

wO == - i(D3~ + ~DI Q), 

uO == -Re[p2D 3(D4 InP + DIQ)]. 

(4.3) 

The equation for M is most easily expressed by 
introducing a function V(z, z, u) which satisfies 

(as does Robinson17 in his discussion of the 
corresponding vacuum solutions). Then, 

The remaining gravitational field equations 
(corresponding to Rabnam band Rabnan b) relate the 
metric tensor components and the neutrino field 
according to 

D 3(m + iM) + 3(m + iM)D I Q 

== if[D3! 

+J(2DIQ+~D3lnP)], (4.6) 

D I [P-3m - ~(D3D3D 4D 4 V + D 4D 4D3D3 V») 

+ p-l (DID~3V)(DID 4D 4 V) 

== - iF-3UDI! - !D1f). (4.7) 

The remaining neutrino field equation restricts 
the functionf by 

(4.8) 

We note that in the absence of a neutrino field 
U = 0), Eqs. (4.1) and (4.3)-(4.7) reduce to the 
general vacuum equations obtained by Robinson, 4 
as required. 

For this class of solutions the gravitational field 
is restricted to be of Petrov- Penrose type {211} 
or {22}. In the special case that the twist of the 
pnc vanishes (~ = 0, Q = 0), which as in Sec. 3 
implies that Tab is of the form (3.1), it can only 
be of type {22J. In this case the line element (1. 5) 
can be further reduced to the very simple form 

ds 2 = - r2 dz dz + 2 dU[dr - r- I m(u) du], (4.9) 

where _ 
am .1.1' af - af ) au = - l ~ au - f au ' 

andf in (4.2) is an arbitrary function of u alone. 
The line element (4.9) has been given by Griffith 
and Newing,7 but its uniqueness as the only 
neuttino-gravitational field satisfying (1.1) with 
expanding but twist-free pnc was not established. 
An immediate consequence of this result is that 
spherical symmetry of space-time is not com­
palible 18 with the presence of a neutrino field 
satisfying (1.1). This has its origins in the 
explicit appearance of the twist of the neutrino 
pnc in the energy tensor, through Eq. (2.5), and is 
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in contrast with the case of the electromagnetic 
field [for which (1. 1) is always valid]. 

We finally give the simplest solution of the sys­
tem of Eq. (4. 4)-(4. 8), with nonzero twist: 

v = 2- l/2u, P = 2- 1/2 , Q = - i'Ez, M = 0, 

with m, 'E, andf being constants. The correspond­
ing line element is given by O. 5) with 

CG = 2(r 2 + 'E 2 ), Q = - i'Ez, 

W = 0, U = (mr - fJ'EHr2 + 'E 2)-1, 

and the neutrino field by 

1> = - f(r + i'E)-l. 

In addition the condition (2.4) is satisfied, with 
equality holding. 

Further explicit solutions have been found, and a 
systematic treatment will be given in a subsequent 
paper. 

APPENDIX 

We outline here the procedure leading to the line 
element (1. 5) in the case that ka is an expanding 
congruence. In order to arrive at this line ele­
ment, we need only assume that space-time admits 
a geodesic and shear-free null congruence ka and 
that the Ricci tensor satisfies (2.7) and (2.8) for 
some complex null vector field m a orthogonal to 
ka; the fact that (2.7) and (2.8) follow from the 
presence of a neutrino field is at this stage im­
material. As in Sec. 2, these conditions imply that 
k a is a repeated pnd of the Weyl conform tensor. 

We found it convenient to start with the line ele­
ment (1. 5) of Robinson 1 9 and then use the New­
man-Penrose formalism. 20 In the notation of this 
formalism, conditions (1. 3), (2. 7), and (2.8) read. 

K = (J = E + E = 0, <POQ = <POI = <P02 = A = 0 

and the fact that k a is a repeated pnd of the Weyl 
tensor is expressed as 

>IF 0 = >IF 1 = O. 

A suitable null tetrad for the line element (1. 5) is 

n a = of + Uo~, 

m a = C-l(Qof + Wo~ + o~ + io~), 

which by virtue of the commutators implies 

T + 'if = A = O. 

The remaining coordinate and tetrad freedom can 
then be used to achieve2l 

T = 1f = EO = O. 

Then by a straightforward integration of the Ricci 

identities, we obtain the r dependence of the re­
maining nonzero spin coefficients and the nonzero 
tetrad components of the Ricci and Weyl tensors: 

p = - (r + i'E)-l, a = (PDlQ + iD4P)p, 

{3 = - iD~P, y = - iDllnP + i(m + iM)p2 

+ <P£lp2p, /-L = i(m + iM)(p2 + pp) 

+ <P£lP2p + (- UO + iDl'E - 2i'ED l lnP)p, 

v = P(vO + P I{I~ + ~p2Y£ + 6-lp3Y~) + P- l <P21> 

where 
vO = Dl[D 4lnP + Dl Q], 

Y£ = 3(m + iM)DlQ + D4(m + iM), 

Y~ = 6i(m + iM)(D 4'E + 'ED 1 Q), 

'" mo 2-2 '*'11 = ~11 P P , 

<P2l = p2p(p <P~l + p2B£ + p3B~), 
where 

B£ = D4<P£1 + 4 <P£l DlQ, 

B~ = 2i <p£1(D4'E + 'EDlQ), 

<P22 = P2[pp <P~2 + pp 2C£ + p2p C£ + p2p2 C~ 

+ <P£1-1(Pp3<p~lBg 

where 

+ p3p ~~lB~ + p21j3B£B~ + p3p2B~£ 

+ p3p3B~B~)], 

C£ = D4~~1 + 3 ~~l DlQ - i p2 D1(<p£lP-4), 

C~ = tD~£ + 2 B£DlQ + i D4B£ + 2B£Dl Q, 

>¥2 = (m + iM)p3 + 2 <P£lP3p, 
>IF3 =P[p2I{1g + p3 Y£ + i p4 Y~ + p(p2 <Pg l 

+ 2p3 B£ + 3p4 B~)], • 
where 
I{I~ = 2i 'E vO + (D 4 + 2D lQ) 

x (~ UO + iDl'E - 2i'EDl lnP), 
- - a 

>IF4 = (3a + {3)V + pP(W ar + D4)v. 

The components of the metric tensor are given by 
(4.1), (4. 3)-(4. 5) except that U now reads 

Further, the final differential Eqs. (4. 6) and (4.7) 
become 

D 3(m + iM) + 3(m + iM)D1Q = 2 ~~l 
and 

D1 [P-3m - t(D3D3D4D4V + D4D4D3D3V)] 

+ P-l(DlD3D3V)(DlD4D4 V) = _p-l <P~2' 

(AI) 

(A2) 
The quantities <P£l' <Pgl , <Pg2 are arbitrary func­
tions of z, 2, u, and represent the freedom available 
in specifying the source. The source-free case 
arises when we set 
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Then the preceding equations reduce to those 
given by Talbot,20 apart from certain notational 
differences,22 and the simplifications arising 
from the introduction of the function V. 

If we assume that the source is a neutrino field of 
the type under consideration in Sec. 4, then the 
neutrino field equations yield (4.2) and (4.8), and 
from the form (2.3) of the neutrino energy tensor 
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An inequality for two positive operators is used to discuss entropy theorems for time smoothing, mix­
ing, and other processes. Especially, it is proved that neglect of nondiagonal matrix elements for the 
density matrix causes the entropy to increase. 

1. INTRODUCTION 

The problem of proving temporal entropy increase 
has been ordinarily investigated on the basis of a 
coarse-graining process, a perturbation treatment 
of the Liouville or Bloch equation, and so on. 1 It 
is the purpose of this paper to present some exact 
considerations of entropy increase for relatively 
simple but well-defined cases. In order to illus­
trate our method, it is perhaps worthwhile to out­
line the classical case2 in this introduction. 

Letj(x) and g(x) be two nonnegative distribution 
functions in phase space. The variable x repre-

sents all phase space variables which are needed 
to describe a given system. The domain of x inte­
gration is irrelevant and need not be specified 
here. Letf(x) and g(x) be connected by 

g(y) = jK(y,x)f(x)dx, (1. 1) 

where K(Y , x) is a transition probability. In case 
a time variable is explicit, Eq. (1.1) may be re­
written as 

(1. 2) 

where the integration does not include the time t1 
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because the normalization of the distribution func­
tions is made in phase space. In view of its prob­
ability character, K(y ,x) must satisfy 

K(y,x) 2: 0, (1. 3) 

expressed by Eq. (1. 6) is in the integration pro­
cess involved in Eq. (1. 2). This represents an 
averaging process over all possible initial states. 
Keeping the above considerations in mind, let us 
now try to consider quantum mechanical cases. 

1 dy KCy , x) = 1. (1. 4) 2. INEQUALITY FOR OPERATORS 

Moreover, the total probability of the system to 
be in a state described by y starting with any 
initial state x must not exceed one3 : 

1 K(y, x)dx :5 1. (1. 5) 

For two Hermitian matrices A and B, let the 
eigenvalue equations be 

A Ij) = aj Ij), 

BI(lI)=bal(ll), 
(2.1) 

Under these conditions, one can show 

1 g(y) logg(y)dy :5 1 f(x) logf(x)dx 

where we have used italic and Greek suffixes for 
distinction. Let us assume that the eigenvalues 

(1.6) are nonnegative, 

First, we notice that Eq. (1. 4) gives (2.2) 

f g(y )dy = ff(x)dx, (1. 7) and that they are connected with each other by 

i.e., both distribution functions have the same nor­
malization. Hence, if we so wish, we can set the 
common integral in Eq. (1. 7) to be unity. 

Now, using Eqs. (1.1) and (1. 4), we find 

f f(x) logf(x)dx -"f g(y) logg(y)dy 

= ff dxdy K(y, x)[f(x) logf(x) - f(x) logg(y) 

-f(x) +g(y)] + Idy[l- Idx K(y,x)]g(y) 
(1. 8) 

The integrands are both nonnegative due to our 
conditions (1.3) and (1. 5) and the Gibbs inequality, 2 

which is equivalent to 

zlogz - z + 1 2: 0, Z 2: 0, 

with z =f(x)jg(y). Hence, we have proved the 
validity of Eq. (1. 6). 

Actually, we can relax our condition (1. 5) to a 
weaker one, 

If dydz K(y, z) K(y, x) :5 1, (1. 5') 

without spoiling our conclusion. However, the 
physical significance of Eq. (1. 5') is not clear, and 
we shall not discuss this point further. 

Also, Eq. (1. 5) shows that we have 

° :5 g(y) :5 maxf(x). 
x 

This would imply that the range of g(y) becomes 
more restricted than that off(x). This may mean 
a loss of available information in our stochastic 
process, which may be partly responsible for the 
increase of the entropy. 

In the above conSideration, we have used a con­
tinuous variable, but discrete cases can be handled 
without any difficulty. The source of inequality 

(2.3) 

In analogy to Eqs. (1. 3), (1. 4) and (1. 5), we re­
qJ,lire4 

Kaj 2: 0, 

L; Kaj = 1, 
a 

The eigenvectors are normalized so that 

(j I k) = Dj,k' 

«(lI1 J3) = Da,B' 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Without loss of generality, we can assume that the 
state vectors are complete: 

L; Ij)(j I = 1, 
j (2.8) 

L; I (lI)«(lI I = 1. 
a 

The two matrices A and B may not commute. If 
they do, the classical inequality (1. 6) holds for the 
present case with the correspondence 

Ij) ~x, aj -f(x), 

1(lI) --y, ba--g(y), 

Kaj -- K(y,x), (2.9) 

while the integrations over x and yare replaced 
by a summation onj and (lI, respectively. The 
interpretation of the resulting inequality in terms 
of entropy is the same as in the classical case. 

If the matrices A and B do not commute, we need 
some slight modification of the statement. How­
ever, we can still prove an analogous theorem, 
although the physical interpretation of Kaj as the 
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probability for a stochastic process is no longer 
possible. 

First,from Eq. (2. 5), we must have 

:6 b = :6a. 
'" . J 

'" J 

(2.10) 

or, equivalently, the correct normalization condi­
tion 

TrB. = TrA. (2.11) 

Moreover, 

Tr(AlogA} = ~ aj 10gC;, 
J 

Tr(B 10gB) = :6 b", 10gb",. 
(2.12) 

'" 
Then, we can prove the following inequality (with­
out assuming the commutability of A and B): 

Tr(B 10gB) :s Tr(A 10gA). (2. 13) 

The proof of this inequality is essentially the same 
as that of Eq. (1. 6) with the correspondence Eq. 
(2.9) and may not be repeated. However, a simple 
inspection of the proof shows that the equality in 
Eq. (2. 13) is 'possible if and only if two sets of 
eigenvalues li)} and {b",} coincide with each other 
as a whole with possible exception of extra zero 
eigenvalues a· = 0 or b", = O. Also, we can relax, if 
we so wish, the condition Eq. (2. 6) by a weaker one 

(2.6') 

as in Eq. (1. 5'). 

It is obvious that Eq. (2. 13) is a natural gene­
ralization of the classical case, Eq. (1. 6). On the 
basis of this inequality, we can derive several 
interesting theorems. 

Theorem 1: Let P be a projection operator 

p2 =P (2.14) 

and let us specify the operator A by 

A = PAP + (1 -P)A(l -P) (2.15) 

in terms of a nonnegative operator A. Then, we 
have 

Tr(A: 10gA} :s Tr{A 10gA). (2.16) 

The proof is simple. Due to Eq. (2.15), the trans­
formation matrix Kaj is easily calculated to be 

Kaj = I<j Ip I a) 12 + I<j 1(1 - P) I a) 12 

when we identify B as A. It is easy to check that 
this expression satisfies the required conditions 
(2. 4), (2. 5), and (2.6). Hence, Eq. (2.16) follows. 

We may physically interpret this theorem that neg­
lect of certain nondiagonal matrix elements of A 
causes the entropy increase. Hence, our theorem 

is an analog of the entropy theorem based on 
coarse graining, and is related to a loss of infor­
mation when we pass from A to A. 
We may easily generalize our theorem by a mathe­
matical induction to: 

Theurem 2: Let Pn , n = 1,2, "', be a complete 
set of projection operators, i.e., 

n 

and let us introduce 

A="PAP' U n n' 
n 

then 
Tr(A IOgA} :s Tr(A logA) 

provided that A is nonnegative. 

As a special case, we have 

(2. 17) 

(2.18) 

(2.19) 

Theorem 3: Let tJ;n' n = 1,2, ... , be a set of 
arbitrary orthonormal complete state vectors. 
Then, for a nonnegative matrix A, we have 

n 

The proof is simple. Choose operator Pn in Theo­
rem 2 to be the projection operator for the state 
tJ; n' Equation (2.20) then follows immediately from 
Eq. (2.19). This inequality may be considered as a 
generalization of the well-known Peierls in­
equality5 for the density matrix. Indeed, we shall 
prove shortly that the latter will result from Eq. 
(2.20). 

The following special case of Eq. (2.13) is interest­
ing. Suppose that B and A are related by 

B = UAU+, (2.21) 

where U is an unitary operator 

U+U = UU+ = 1; (2.22) 

then we have 

Tr{(UAU+) 10g(UAU+)}= Tr(A 10gA). (2.23) 

Notice that Eq. (2. 23) is an equality instead of an 
inequality. This is obvious since both operators A 
and UAU+ have exactly the same set of eigenvalues. 
Hence, by a remark after Eq. (2. 13) we must have 
the ~quality in Eq. (2. 13). 

The equality (2.23) represents simply the dynami­
cal reversibility. Particularly for A = p(O) repre­
senting the initial density matrix at t = 0, let 

U = U(t) = exp(iHt/Ii), 

B = pet) = U(t)AU+(t). 
(2.24) 

Then, Eq. (2. 23) is reduced to the Liouville theo­
rem 
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Tr{p(t) logp(t)} = Tr{p(O) logp(O)} 

Since the entropy S(t} may be defined by 

(2.25) be the density matrix at t = 0, and let us assume 
that it is diagonal. If, for t > 0, the system is sub­
ject to interactions, if the Hamiltonian is 

S(t) = - kTr{p(t) logp(t)}, (2.26) 

k being the Boltzmann constant, it is rewritten as 

S(t) = S(O). (2.27) 

In order to obtain some mechanism for a genuine 
increase of the entropy, it is obvious that we have 
to modify some aspects of theory. One possibility 
is to assume that U is really not unitary but in­
stead satisfies 

U+U = 1, UU+ :s 1. (2.28) 

Such a behavior is, of course, not possible 4 for 
finite-dimensional space. But Eq. (2. 28) could be 
possible in an infinite-dimensional Hilbert space, 
as we see in the scattering theory where the 
MllIller wave matrix satisfies analogous condi­
tions. 6 In such a situation, a genuine reversibility 
could occur since we can prove only S(t} ~ S(O) 
now. However, for an infinite-dimensional space, 
our formal proof must be carefully reinvestigated 
in a mathematically more rigorous fashion. 

We will now consider some other mechanisms for 
entropy increase. 

(i) Suppose that, in Eq. (2. 24),B is replaced by 
its diagonal part: 

B = (U+(t}AU(t» diag == .0 Ij)(j I p(t} Ij)(j I (2.29) 
J 

where p(t) is defined by Eq. (2. 24) with A = p(O}. 
By definition, A and B commute and two sets of 
states {Ia)} and {Ij)} coincide as a whole. We can 
connect A and B by introducing a transition mat­
rix K = (Kaj ) by 

(2.30) 

which satisfies all properties (2. 4}-(2. 6). Thus, 
we arrive at 

(2.35) 

and if the density matrix 

p = exp(- f3H) (2.36) 

is replaced by its diagonal matrix 

(2.37) 

then the same inequality (2. 31) holds. 

This diagonal approximation is not generally good. 
However, if the time interval (0, t) is small in 
comparison with /i-l times the magnitude of the 
interaction, then the diagonalized density matrix 
can be reasonably close to the correct density 
matrix defined by the perturbation from the Liou­
ville equation, 

Van Hovel has shown that this is indeed the case. 

(ii) Let A = p(O} and let B be a time-smoothed 
denSity matrix defined by 

B =!.. (d.t U(t)AU+(t} == (P)r; 
T '0 

(2.38) 

then 

Tr{(p\ log(p\} :S Tr{p(O} logp(O)} (2.39) 

In other words, the time smoothing operation leads 
to entropy increase. The importanie of introduc­
ing time averaging has been discussed by Kirk­
wood and others.7 Since the proof of Eq. (2. 39) is 
similar to the previous cases, it will not be re­
peated. 

(iii) For an open system, a description in terms 
of an ensemble of Hamiltonians {~} is necessary. 
We define 

A = p(O), Un = exp(i~t/Ii), (2.40) 
Tr{[p(t>lD log[p(t}]J :S Tr{p(O) logp(O)}, (2.31) and 

where the suffix D stands for "diagonal" with res­
pect to eigenstates of p(O}. Equation (2.31) implies 

S(t) ~ S(O) (2.32) 

if we redefine S(t) by 

S(t} = - k Tr{[p(t)] log[p(t}] }. 
D D 

(2.33) 

We conclude that the entropy defined by [P(t)]D 
increases in general in comparison to S(O}. 

As a particular case, let 

p(O) = exp(- f3Ho) (2. 34) 

(2.41) 
n 

If the numerical weights Cn satisfy the condition 

(2.42) 

" 
we find that the transformation function Kaj now 
given by 

Kaj = 6 Cn I (a I Un (t) Ij) 12 
n 

satisfies the conditions (2. 4}-(2. 6), and hence we 
conclude that 

Tr{p(t) logp(t)} :S Tr{p(O) logp(O)}. (2.43) 
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Next, we shall prove that we can derive the Peierls 
inequality from Theorem 3. To obtain this result, 
we will first show that it gives us the generalized 
Gibbs inequality. 

Tr (A logA - A 10gB - A + B) ~ 0 (2.44) 

for two arbitrary nonnegative matrices A and B. 
Let t/ln be the eigenstate of B, with 

Then, the inequality (2.20) can be used to derive 

Tr(A 10gA - A 10gB - A + B) 

~ :6(an logan - an logbn - an + bn), 
n 

where we have set a,. = (t/ln IA I t/ln). But the right­
hand side of this equation is nonnegative due to the 
classical Gibbs inequality z logz - z + 1 ~ 0 for 
z ~ 0 with identification z = a,./bn • Therefore, we 
find Eq. (2. 44). 

Now, in order to prove the Peierls inequality, let 
us make a substitution A ~ eB and B ~ eA in Eq. 
(2.44): , 

Tr(BeB - AeB - eB + eA) ~ O. (2.45) 

For an arbitrary complete orthonormal state vec­
tor t/ln' n = 1,2, ... , and for a given Hermitian 
operator A, let us choose the operator B in Eq. 
(2.45) to be 

B =:6 It/ln)(t/lnIAIt/ln)(t/lnl. 
n 

It is then apparent that Eq. (2. 45) leads immed­
iately to 

Tr(e A ) ~ :6 exp«t/ln IA I t/ln»' (2.46) 
n 

This is the Peierls inequality. 

Concluding this paper, we will make some appli­
cations of the Gibbs inequality (2.44). First, if 
we normalize A and B to be unity, Le., 

TrA = TrB= 1, (2.47) 

then it reduces to 

Tr(A logA) ~ Tr (A 10gB). (2.48) 

us the following expression for the entropy: 
3N 

S S k(- logA + :6 (F»), (2.51) 
j 01 } 

where the expectation value of an operator Q is 
defined as usual by 

(Q) = Tr(Qe-BH)/Tr(e- BH ). 

Especially, choose Fj to be 

Fj(xj,Pj ) = ~(Xj)2 + h(Pj)2, 

(2. 52) 

(2. 53) 

where u and v are arbitrary positive constants. 
Since Fj is easily diagonalizable, the normaliza­
tion constant A for N identical particles is readily 
calculated to be 

A = N! (2 sinh ~w)3N, 

w = (uvn2)1/2 

so that Eq. (2.51) is reduced to 

S S k{ - 10gN! - 3N log(2 sinh ~w) 

+ ~N[u(x2) + v(p2)]}, 

(2.54) 

(2.55) 

where (x2) «p2» is the common value of (xJ) 
«pJ» for the isotropic medium. Since u and v are 
arbitrary, we can minimize the right-hand side of 
Eq. (2. 55) by changing these variables, and we 
easily find 

S S k{- log(23NN!) 

+ ~N[(z + 1) log(z + 1) - (z - 1) log(z - I)]}, 

where z is given by 
(2. 56) 

z = (2/1l}[(x 2)(p2)]1/2. (2. 57) 

Notice that, by the usual uncertainty principle, we 
must have z ~ 1 automatically. Actually, we can 
replace (x2) and (p2) in Eq. (2.57) by «x - (x»2) 
and «p - (p»2), respectively. This is due to the 
fact that we could have replaced Xj and Pj in Eq. 
(2.53) by Xj - (xj) and Pj - (Pj ), respectively, from 
the beginning. 

For a classical system, the situation is much sim­
pIer. Iff(x) and g(x) are two classical distribution 
function normalized to be 

Let us choose A to be the exact distribution func- Jf(x)dx = J g(x}dx = 1, 
tion 

(2. 58} 

A = e-BH/Tr(e-BH). (2.49) then Eq. (2. 48) is now rewritten as 

Also, we set B to be an uncorrelated trial distribu- J dx f(x) logf(x) ~ J dx f(x) logg(x). (2.59) 
tion function of the form 

(2.50) 

where A is the normalization constant, N is the total 
number of particles and Fj is a function of jth 
particle variables Xj andpj' Then Eq.(2.48) gives 

Since the contribution due to the kinetic energy is 
easily subtracted out, we discuss only the quantity 
associated with the space coordinates. Again 
choose f(x) to be the correct distribution and set 

3N(A) g(x) = IT - 1/2 exp[- A(X. - b)2], 
j=l 1T J 

(2.60) 
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where.\. and b are arbitrary constants. With this 
choice, Eq. (2. 59) leads to 

jf(x) logf(x)dx 2: R[ iIOg(~) - ,\,«xj - b)2)]. 

Again maximizing the right-hand side with res-
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The perturbation theory of Hille and Phillips for semigroups of bounded linear operators on a Banach 
space is modified to apply to the semigroups 'of positive traceclass operators encountered in quantum 
statistical mechanics. 

INTRODUCTION 

Quantum statistical mechanics aims to clarify the 
macroscopiC aspects of a system composed of a 
large number of microscopiC subsystems which 
interact with each other. The division between 
macroscopiC and microscopiC systems is prompt­
ed by atomic theory. A frequently used model 
takes the microscopic system to be a "particle" 
(atom, molecule, or the like) and treats it as an 
irreducible component. Correlations among parti­
cles are attributed to interactions which perturb 
the behavior of the idealized free particles. 

Mathematically, free particles are described by 
the free (Fock-Cook) representation 1TF : a -) CB",,(X) 
of the C*-algebra of fields a in the C*-algebra of 
bounded linear operators on the representation 
(H)-space X.I Let (Bl(X)[resp., (Bt(X)] denote the 
(B)-space of traceclass operators (resp., the set 
of positive traceclass operators) on X, normed by 
the tracenorm //-11 1 • 2 If a is the C * -algebra of a 
bounded system the physically interesting states 
on a are the states which are normal with respect 
to the free representation. 3- 5 Such states are of 
the form a 3 A -> trx (S·1T(A))·(trx (S))-l with a 
statistical operator S E (Bt(X). 

Let IR+ = (0,00) and define R+ = [0,00) = {o} U IR+. 
Then iR+ is an additive semigroup with identity 

element 0 under addition of real numbers. A ~o)­
semigroup on X is any semigroup map ~om IR+ 
into CBoo(X) which assigns Ix to the 0 of IR+ and 
which is continuous in the strong operator topology 
of (B (X).6 Such a semigroup is said to be self­
adjoint (resp., positive; invertible) in case its 
values in CBoo(X) are selfadjoint (resp., positive; 
invertible) operators. A bounded operator is 
called Invertible if 0 is not an eigenvalue. 

Proposition 1: Let S E CB oo(X) be positive and 
invertible. Then there is one and only one self­
adjoint (Co)-semigroup S(·) such that S = S(I). 
This semigroup, called the power semigroup of S, 
is also positive and invertible. 

Proof: If P(·) is the spectral family of S, then 
S = {adP(a). Since specS C R+, H = - j(loga)' 
dP(a == - logS is a well-defined, possibly un­
bounded, selfadjoint operator. Let its spectral 
representation be given as H = j 1) • dE(1/). Then 
the spectral calculus implies that s -> 

exp(- sH) == j e- STJdE(1) = j asdP(a) yields the 
existence part of the propOSition. It is clear that 
S(s) = exp(- sH) is positive and invertible for all 
s E R+. For uniqueness, let s -> T(s) be any self­
adjoint (Co)-semigroup with T(I) = S. Then, by 
Theorem 1 of HP 22. 3 (see Ref. 6), T has the re­
presentation 
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T(s) = J e-STJdE('r/), 

where E(') is the spectral family of its (negative) 
infinitesimal generator. Putting s = 1, 

S = S(l) == fe-TJdE(r,) = T(l) =: fe-TldE(ry) 

Shows, by the uniquen~s of the spectral repre­
sentation, that E(') = E(') and hence S(·) = T(·)./// 

We call the operator H == - logS constructed above 
the Hamiltonian of the power semigroup of S. It is 
the (negative) generator of S(·). 

In particular, if S E <Bt(X) is invertible, it is of the 
form 

with eigenvalues II S II"" = 0'1 > 0'2 > " . > a" > '" 
> 0, 0' n ~ 0 as n l' 00 and projectors Pn such that 
dim(P"X) < 00. It follows that 

H == 6 (- loga,,)' P" ?: - loga1' lac and tractS) 
n?l 

= II Sill == II exp(- H) 111 == ~ On dim(PnX) < 00. 
n?! 

For s > 1 it then follows that 5(5) == exp(- 5H) is 
in <Bt(X) also, since II 5(s) II~ = II 5(1)'5{s - 1) 111 s; 
II S(l) 11 1 .\1 5(s - 1) 1100 = ii Sill' (a1)8-1 < 00. If 0 < 
s < 1, however, it does not follow in general that 
S{s) E <Bt(X). For example, if (Pn ),,?l is a family 
of one-dimensional pairwise orthogonal projectors 
in X and an == n-2 , 

trac(S) = II S 111 = I; n-2 < ,00, 
n?1 

while tracS( ~) = II Sl/2111 == I; n-1 == 00 
n?l 

Definition 1: A linear operator S E <Bot (X) is a 
Gibbs operator if it is invertible and S(s) E ffit(X) 
for all s > O. If 5 is a Gibbs operator, the associ­
ated Hamiltonian H == - logS is called a Gibbs 
Hamiltonian, while the power semigroup S(·) of S 
is a Gibbs ·semigroup. 

By proposition 1 any datum among S,H, 5(') 
uniquely determines the other two. It would be of 
interest to have explicit spectral criteria for H to 
be a Gibbs Hamiltonian. 

We note that for any c > 0: (c'5)(s) = cS·S(s) so 
that the power semigroups which extend S and c'S, 
respectively, are simply related by multiplication 
with c : s -> c 8 • The corresponding Hamiltonians 
are Hand H - logc, respectively. Thus by choos­
ing C ?: <Til == II S 11-1 (or c> ail, respectively) it 
is often possible to

OO 
restrict oneself to operators S 

with specS C [0,1] (or specS C [0,1), resp.) or, 
equivalently, to H with specH C [O,oo)(or specH C 

(0,00), resp.). In any case II S(s) 1100 :::: aL so that 
for 0'1 = 1 S(s) is always of norm 1, while for 0 < 
0'1 < 1, S(s) is a contraction whose norm decays 
exponentially with s l' 00. The number loga1 is 
called the type of the semigroup. 

Proposition 2: Let S(·) be a Gibbs semigroup. 
Then its restriction to R + == R + \{ o} is continuous 
w.r.t. the tracenorm on ffi t(X). 

Proof: There is no loss of generality in assum­
ing 50 to be of strictly negative type. Let 0 < 
is < sl s; S s; S2 be given with s fixed. Define a 
function 

It is easily proved to assume its maximum 

Now, if 

5 = n~lanPn(as above), II 5(81) - S(s2) 1100 -s /0 

= supfs s (0,,) s; sup fs s (0') ==..£-. (1 +..£-.) 1 
n?l I' 2 O€[O,1J I' 2 S2 8 1 

As 8 1 l' 8 and S2 ~ 8,6 -? 0 so that the rhs tends 
FO zero and S(·) is II ·11 00 - continuous on R+. 

Finally, in the same limit 

II 8(sl) - 8(S2) \\1 

= II S(is )'(S(sl - is) - S(82 - ~S)]1I1 

s; II S(is) 11 1 .11 5(Sl - h) - S(S2 - t8~ lIoc -> 0, 

as S(·) is 11'1/ C)() - continuous at t s by the preceding 
step./ / / 

Assume S(·) is a Gibbs semigroup. Thus it is 
clear from Stone's theorem that the self-adjoint 
operator H generates a strongly continuous 
unitary group by lR 3 t -> T(t) == exp(- itB). 
Furthermore C r == R.r + i lR :3 s + it ~> S(s)· T(t) == 
U(s + it) defines the maximal semigroup exten­
sion of S(·) in (J3 (X). It is strongly continuous on 
cr_and (uniform'fy) holomorphic on the interior C r 
of Cr' 7 U(-) is the full Gibbs semigroup of S. Its 
knowledge is equivalent to the pair (S(·), T('» 
which is also characterized by the Hamiltonian H. 

If we interpret H as the unperturbed Hamiltonian, 
an expression of the form H + P, involving a suit­
able perturbation P, can be regarded as the 
Hamiltonian of an interacting system. In the fol­
lowing we find sufficient conditions on P such that 
H + P generates a perturbed Gibbs semigroup. 
Moreover, we represent the perturbed Gibbs semi­
group in terms of P and the unperturbed Gibbs 
semigroup as a tracenorm convergent infinite 
series whose nth term involves precisely n 
factors of P. 

With S(·) a Gibbs semigroup, the states (i :3 A-> 
tr3C, (S(s 'n-F(A»/trx(S(s» are called the Gibbs 
states associated with S (or equivalently with its 
Gibbs Hamiltonian H). In more customary nota­
tion s == {3 == (kT)-l so that 5(s) := e- SH• In sub-
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sequent work we use the perturbation theory for 
S(·) which is developed here in order to derive 
corresponding expansions for the Gibbs states 
associated with S{·). 

It should be apparent to the attentive reader of the 
relevant literature that the fundamental (nowadays 
predominatly algebraical) aspects of local quantum 
theory have received plenty of attention and are 
quite polished. In contrast to this the computa­
tional aspects appear to be still underdeveloped. 
A workable, mathematically controlled perturba­
tion theory can serve to bridge this gap. One 
might well recall that the "applied part" of quan­
tum electrodynamics, i.e., the part which produces 
numbers to be compared to experimental numbers, 
is almost totally dependent on perturbation ideas. 
In fact, the corresponding perturbation formalism 
has been form all y transcribed into the context of 
quantum statistical mechanics. 8 Generally these 
treatments do not contain enough mathematical 
detail to allow one to arrive at convergence 
proofs and thus remain formal. An exception to 
this statement is formed by the work of Gruber9 

on Euclidean Green's functions. While similar in 
basic motivation his approach to the perturbation 
problem is mathematically entirely distinct from 
ours. 

Outline: In Sec. 1, we present, as an example, a 
typical unperturbed semigroup which will figure 
in later applications. Section 2 gives pertinent 
facts arising from the semigroup perturbation 
theory of Hille and Phillips (HP-Chap. XIII), which 
forms the basis of our treatment. Since their 
perturbation theory is formulated in a Banach 
space and applies to more general classes of 
semigroups (not only (Co)-semigroups) it becomes 
necessary to specialize to our context. In parti­
cular, the self-adjointness notion which is peculiar 
to (H)-spaces can be exploited. Naturally, some­
what stronger results can be claimed. Finally, in 
Sec.3 we extend these results to Gibbs semi­
groups. 

1. UNPERTURBED SEMIGROUP 

As a typical example of the unperturbed setup we 
summarize the Fock-Cook construction for a 
fermion field in a "periodic box". Its details dif­
fer little from standard constructions1,10-12 and 
are germaine to applications in subsequent work 
only. 

A. Single Particle Space ~ 

Let II;::: 1 be an integer and b = (b,,)l$O: ~v an 
element of IR~. The subset 

II 

B = n [O,bo:) 
0:=1 

of IR V represents a "periodic box" of volume 
II 

lEI = n bo:. 
0:=1 

If j.L B denotes the restriction of Lebesgue measure 
on IRII to B, the single particle space is given as 
f) = L~ (IRY, j.L B)' Its inner product and norm are 
written as (f,g) = f dj.LBf·g and IIfll = (f,f)1/2. 
A CONB is obtained as follows: with 

K = ~(:: met) 150:511 I met integer ~ 
define the functions (Le., classes) 

ek : IR/I~ C: x -> IBI-1/2'exp(ik'x), 

where k E K. 

B. Foek-Cook Multiparticle tSpace X 

Let /\ f) = EBm>O /\mf) be the exterior algebra of the 
complex vecfor space f). Here /\ 0 f) = C . 1, /\ 1f) = 
f). /\ mf) is the mth exterior power of X for m ~ 2, 
which is spanned by decomposable vectors of the 
formf1/\ . "/\fm withfi E f). 

The aSSignment 

U1 /1. ••• /l.f m' g-l' .•• /l.gn> == I)rnn 'det«1; '~»ij 

for all m, n ~ 0 andfi,gj E f) extends uniquely to 
an inner product on /\ f) , which becomes a Haus­
dQrff prehilbert space as a consequence. Let A f) 
denote its norm completion, which no longer is an 
algebra, since dimf) = co. A f) is the (H)-space 
direct sum of the completions Am f) of /\m f) and 
constitutes the multiparticle space X. 

I! K is assumed totally ordered and K' is any 
finite subset of K, let eKI == ek /\ ••• /\ek , where 

1 IKII 

{k1 , • •• , k 1K11} is the ordered presentation of 1<.". 

The collection (e K,) KICK finite thus obtained forms 
a CONB of Jr. 

C. Field Algebra 1TF(a) 

For f E f), let f /I. be the linear operator on /I. ~ 
which sendsf1/\" '/\fm intof/\f1/1.· ··/\fm • Since 
it is bounded on /\ f), it extends by continuity to an 
operator c{f) E ffi",,{X). The mapj->c{f) is c­
linear and satisfies c{f)c{g) + c(g)c(f) = O. 

The field algebra 1T F{a) in the Fock-Cook repre­
sentation is then defined as the smallest C*-sub­
algebra of ffioo{X) which contains l:JCand all c(j), 
f E f). 

The creation operators c(f) and their adjoints, the 
annihilation operators c(j)*, are characterized by 
the canonical antic om mutation relations (CAR): 

(i) c(f)-c(g) + c(g)'c(f) = 0, 

(ii) c(j)·c(g)* + c(g)*'c(j) = (j,g)'1 ,the 
"vacuum condition", x 

(iii) c(j)*lx = 0 together with the irreducibility of 
IT F(a). 

I! u is unitary on f), then f 1/\ ... /l.f m -> uf1/\ ••• 

/\uf m extends uniquely to an automorphism /\u on 
/l.f). Since it is isometric and has an inverse /I.u-1 
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which is also isometric, Au again extends uniquely 
to a unitary operator Au on 7\ f) = JC. The map u ~> 
/\u is easily seen to be a strongly continuous re­
presentation of the unitary group of f) in the 
unitary group of JC. Thus if R :3 t ~> u(t) = 
exp(-iht) is a strongly continuous unitary group 
on f) with generator h then R:3 t ~> /\u(t) is such a 
group on JC. In particular, it is of the form /\u(t) = 
exp(- iHt). It is convenient to write H = d/\(h) to 
emphasize the connection between the single parti­
cle Hamiltonian h and the many particle Hamil­
tonian H. d/\ is the second quantization map for 
self-adjoint single particle operators., We note 
that c(u/) = (i\ u)·c(j)· (/\u- i ). 

In terms of this notation it was shown by Shale and 
Stinespring12 that exp(- sh) is in CBt( f) if and only 
if exp(- sd/\(h» is in <Bi(JC), where s > O. In parti­
cular it follows, that s -> exp(- sh) is a Gibbs 
semigroup if and only if s -> exp(- sd7i.(h» is a 
Gibbs semigroup. Within this setup it is hence 
sufficient to assume that one is given a Gibbs 
semigroup on the single particle space f) : s -> 

exp(- sh). The perturbation problem is tlJenposed 
for the corresponding semigroup s -> exp(- sH), 
where H = d/\(h). 

2. HD..J.E -PHILIJPS PERTURBATION THEORY 

Let JC be any separable complex (H)-space. 
Throughout this section we assume given a self­
adjoint (Co)-semigroup S: Rr ~ CBoo(JC): s -> S(s). 
The following lemma lists some automatic con­
sequences. Let 

~ii = {/ E X I s-lims- i (5(s) - l)fexists}. 
S"o+ 

For / E ~jj the generator ii == - H of S(·) is 
defined as 

ii/ = s-lims-l(S(s) - 1)/. 
5'.0+ 

Briefly,ii = lim(S(s) - l)/s with the "natural" 
maximal domain ~jj is the right derivative of S(·) 
at 0. 

Lemma 2. 1: (i) The limit Ums-l'lI 5(s) 1100 == 
Wo exists and is finite and 5 .... 00 

II S(s) 1100 = exp(wo's); 

(ii) The generator Ii is self-adjoint with ii ::s 
wo'l; 

(iii) If ii is bounded, C:3 s + it ~> exp(sii)· 
exp(itii) defines the (ent!!:e) maximal ho~morphic 
extension U(·) of SO. If H is unbounded, C r = 
"Rt + iR :3 s + it ~> exp(sH}exp(itii) defines the 
maximal bounded extension U(·) of 50. The re­
striction of U(·) to C .. = R+ + iR is the maximal 
holomorphic extension. For s > 0,5(s) is positive 
and has an unbounded densely defined inverse; 

(iv) For any s + it in the domain of the maximal 
holomorphic extension ~ii :> U(s + it)X and U(·) 

is complex differentiable [in the uniform topology 
on <Boo(X}] with derivative ii oU(s + it) at s + it. 

Proof: Items (i), (ii), and (iii) are readily de­
duced from Theorem 1 of HP 22.3. (iv) is an 
easy consequence of the spectral representation 
of U{-) induced by the spectral representation of 
the self-adjoint ii./ / / 
A linear operator P == - P wiQt d~ai~:Di = ~jj 
is an allowed perturbation of H if H + P gen­
erates a (Co)-semigroup, given that jj does. 

A linear operator Q with domain ~Q is ii-bounded 
if :DQ :J :Dff and there are ...£onstants a ~ 0, b ~ 0 
with IIQ/II::S allfll + b IIHfl1 for all/ E '.Dii. 2 

Let p(ii) be the resolvent set of ii and for A E 
p(ii) set R(A; ii) == R(A) == (x. 1 - ii)-i. 

Lemma 2. 2: Let P have domain :DiL:.. Then the 
following are equivalent conditions on P: 

(i) For some X E p(ii), P °R(A) E <Boo (X); 

(ii) For all X E p(ii), P oR(A) E <B (X); 
co 

(iii) P is ii-bounded; 

(iv) P is a bounded operator from :Djj (with the 
graph norm of ii) to JC. 

Proof: (i) =;> (ii): If poR(>..o) E <Boo(X) and A E 
p(ji) the first resolvent equation poR(A) = poR(Ao) 
+ (Ao - A)poR(Xo)'R(X) implies poR(X) E <Boo(X) 
also. (ii)::::::> (iii): Let j) E :Dj{ and A E p(ii), then 
lip/II = II POR(A)oR(A)-l/ 11-;; /I poR(A} 1I·II(Al -
ii}/ II ::s /I paR (A) II . {I X 1·11/ II + II ii/ II} ':' (iii) =;> 

(iv): :DJi :3 / :: (f~Hf) E graph ii is a bijection. 
Since graph H is a (N) subspace of JC $ X, :Dii is 
a (H) space via this bijection. The graph norm of 
/ E ~ii is II/lie = '1'11/112 + IIH/1I2' It is equi­
valent to the norm II! lin = 11/ II + II ii/ II. Let f E 
'.Djj, then 

IIPfll::s all/II +bllii/II 

~ max(a,bHII/1l + lliifll) 

::s max(a, b)lIf lin' 

(iv) =;> (i): Let A E p(ii) and g E X, then 

IIR(A)glln = IIR(A)gll + lliiR(A)g1l 

= II R(X)g II + lI(ii - Al)R(A)g + },gil 
::s IIR(A)lI oo 'lIgll + IA-ll·llgl/ 

Hence R(A): JC ~ ~jj is a continuous bijection 
between (B) spaces and even a linear homeomor­
phism by the open mapping theorem. In j>articular 
this map is bounded (in both direction). po R(X) is 
the composition of bounded maps and is therefore 
bounded. / / / 

Remark 2. 1: Hille and Phillips denote the 
class of operators P which satisfy any (and there­
fore all) of the conditions of Lemma 2. 2 by 9 (ii). 
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Given any Q E d(Ii) define Q ~ = limX·Q·R(X). 
More precisely, let A"" 00 

~Q_ = {j E JC I limX' Q . R(X)'f eXists} 
A~OO 

and put Q - f = limA QR(A)flforifiE ~Q -as A ~ 00. Q­
is called the Ii-extension of Q. Let 9 -(H) be tne 
class of all Ii extensions. Theorem 1 of HP 13. 3 
then asserts that ff(Ii) => Q -> Q- E d -(Ii) is a 
bijection, whose inverse is the restriction map to 
~jj' Furthermore, if Q has a closed extension Ql' 
then Q C Q - C Ql' Also, if Q is bounded, Q - E 
ffi (JC) with 00 

IIQ-II = sup IIQfl1 . 
00 01/(:D-1lJlr 

H 

Lemma 2.3: Let Q have ~Q => ~jJ: 

(i) If Q is closable then it is iI-bounded; 

(ii) if Q is symmetric then it is iI-bounded. 

In either case the restriction QI:D- E d(iJ). 
H 

Proof: (i) Put .Q' = Q I:D -. Then, since !Djj is 
dense, Q'* exists and Q* C (Q')*. Since Q is 
closable Q* is densely defined, so that (Q')* is 
densely defined and (Q')** exists and is the 
closure of Q'. Thus it is sufficient to assume 
!DQ = ';Djj. 

A~umefn E 5:Q, g E JC with Ilfnll~ = Ilfnll + 
II Hf n II ~ 0 and II Qf n - g II -7 O. Since also Ilfn 11-7 
o and Q is closable as a map in JC it follows that 
g = O. This means also that Q is closable as a 
map from the (B)-space !DjJ to the (B)-space JC. 
Since it is defined on all of !Djj it is closed and 
then bounded by the closed fQ"aph theorem. By 
Lemma 2. 2 it is therefore H-bounded. 
(ii) Q C Q* implies Q C Q** C Q* and Q is 
closable. Apply (i).1 I I 

Lemma 2.4: Let!Dp = !Djj. If iI + P also_ 
generates a self-adjoint (Co)-semi~roup then P is 
necessari!Y sY'!pmet!:!c. If~, its H extension 
satisfies P C P- C P ** C P *. 

Proof: By Lemma 2. 1, iI + P is self-adjoint 
<2!l its domain !Djj. ~ is den..Eely ~efined, so that 
P * exists. Finally P * = [(H + P) + (- Ii)]* => 
(iI + P)* + (- Ii) * = (iI + P)- iI = P. If pc P*, 
then pcp** C p* and pc P- C p** C p* 
follows by remark 2.1, since p** is the closure 
ofP.111 
As a result, if we are concerned with perturba­
tions which do not destroy the self-adjointness of 
the semigroup, any perturbing operator P with 
:Dp = :Djj will Eave to be symmetric and will auto­
matically be H-bounded due to Lemma 2.3. It is 
then sufficient to work with P * which extends all 
relevant operators. Furthermore, if a symmetric 
Q with :DQ => :Dil is given ~ the start, the~ P = 
Q I:D- will do also, since P C Q C Q* C P * so 

H 

that P is symmetric. 

Lemma 2.5: Let Q have !DQ => :Djj. 

(i) QoS(s) is defined on JC for s E R+. 

(ii) If Q is closable, then QoS(s) E ffi (JC) for s > 
o and 00 

II Qo S(s) II 00 = sup II QoS(s)f II < 00. 

1I/II=l./E:Dil 

Furthermore, iR.,..=> s -> QoS(s) is 11'\\",,- continuous, 
while iR+ => s -> IIQ'S(s) II"" is continuous. 

(iii) if Q is closable and S is a Gibbs semigroup 
then the last continuity statements hold in terms 
of \\'11 1 , 

Proof: (i) By Lemma 2.1, (iv) !Dii => S(s)JCfor 
s > O. (ii) S(s) is closed and bounded. Therefore 
QoS(s) is closable, since Q is. Hence it is closed, 
since it is everywhere defined by (i), and therefore 
bounded by the closed graph therorem. Since!Dii 
is dense in JC the equality statement follows. 

For s > 0, let 0 < ~ s < sl :S s :S s2' Then 
IIQoS(s2) - QoS(s~)lloo = IIQoS(h)'{S(s2 - h)­
S(Sl - h»I1",,:s IIQos(h) 1100' IIS(s2 - is) - S(sl 
is) 1100 as SI ~ s the rhs goes to 0 due to the 

S2 

11-11",,- continuity of s' -> S(S') at s' = is (Lemma 
2.1). Therefore (ii) follows. For (iii): As in (ii), 
IIQoS(s2) - QoS(sl)11 1 :s IIQoS(is) II",,' IIS(s2 - ts)­
S(sf. - is)111 -70 due to II· lie continuity of S(·) at 
is ~Proposition 2).111 

Remark 2.2: In the situation of Lemma 2.5, 
(ii) if Wo is the type of S(·) (Lemma 2.1), then with 
Ii> 0 and s > 0, 

IIQoS(s + Ii) II"" :s IIQoS(Ii)1100 '1IS(s)lloo 

:s IIQoS(Ii)ll oo ·exp(wos). 

Thus, if Wo < 0, s ~ IIQoS(s)lIoois integrable on any 
interval [1i,OCJ) with Ii > O. 

In the general case (i), the continuity of s -> 
IIQoS(s)fll for f E JC implies the lower semicon­
tinuity and a fortiori the measureability of 
s -> sup II QoS(s)f II. 

1I/II=l./E:Djj 

Definition 2: A linear operator P is said to be 
in the Phillips perturbation class <J>(fl) of fl, if 

(i) !Dp = !Dii 

(ii) Pis fl-bounded, 

(iii) for s > 0 sup IIpoS(s)f II < 00, 

II/II =l./E:Djj 
1 

(iv) fo ds sup IIpoS(s)f II < 00. 

II/II = 1,j E:Dii 

Le.!. <J>c(H) [resp., <J>s(ll)] denote the class of P E 

<J>(H) which are closable (resp., which are sym­
metric or, equivalently, which possess a symmet­
ric extension). 
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It is clear from this definition that (9(Ji) is a com­
plex line~r spac~ . .J(9lH) is a real linear subspace]. 
Also, (ge(H) ::J (9s(m. For closable (or symmetric) 
P satisfying (i) it follows that P E (9(ii) if and only 
if s -> IlpoS(s)II is integrable at 0, since (ii) and 
(iii) are automatically satisfied according to 
lemmas 2.3 and 2. 5. In particular, (9(ii) contains 
the restrictions to ~H of all Q E CBoo(JC). Alter­
nate conditions for (iii) and (iv) are in HP 13.5. 

Theorem 2.1: Let jj on ~ii generate a self­
~djoint (Co)-semigroup S(·)...£>n JCand assume 
P E (9 (H) . Let Q be either P or 11 ~H' Then 

(i) H + P generates a (Co)-semigroup 

s -l> Spes) ==.B S!(s), 
n~O 

where.s!(s) == S(s) and S%(s) == t ds l S(s - sl)' 
P-o S:-I(SI) for n 2: 1 ate defingd as strong 
BOchner integrals. The infinite sum converges 
absolutely (in norm) and uniformly so on inter­
valsJO, s) with 0 < So < 00. The functions s ...;:. 
QoS!:(s) are strongly continuous for s> 0 as well 
as Bochner integrable on compact subsets of Rt ; 
(iD if S(·) is norm continuous for s > 0, then 
SP(.) is likewise norm continuous; 

(iii) let D be a domain in C with elements z. As­
sume that P(z) E (9(Ji) for ZED and that Z ...;:. 
P(z)-oS(s) is holomorphic in D such that 

s -> sup IIp(z)-. S(s)lloo 
zE D 

is integrable on [0,1]. Then Z -> SP(z>(s) is holo­
morphic in D for any s > 0; 

(iy) if (ii) applies or if P E (ge(H) the definition of 
S;:(s) !!olds as a norm Bochner integral and s -> 
Q- ° 5;:(s) is norm continuous as well as integrable 
on compact subsets of ~. 

Proof: (i) results from the proof of Theorem 1 
and Corollary 1 of HP 13.4. (ii) follows from 
Theorem 2(5) of HP 13.4 since a (Co)-semigroup 
is also a (1, A)-semigroup. (iii) Theorem 3 of HP 
13.4. (iv) Lemma 2.5 (ii) yields the norm contin­
uity of s -l> Q - • 5(s). A straightforward modifica­
tion of the proof of (i) then results in (iv). / / / 

Remark 2.3: .. Assume i\ and ]>2 are in CJ>(H) 
and define 

d(I\, P 2) == t ds II (PI - P 2 )-oS(s) 1100 < ce. o 

Then according to HP 13. 5, d is a metric on <9(H) 
which makes it into a complete metric space. Also 
if d(Pl' P 2 ) -'> 0 then 

IIsPI(s) - s.P2(s)IIoo -'> 0 

uniformly for s in compact subsets of R+ (HP 
13. 5). 

If s E IR and (s)n == (SI, ••• , sn) E JRn, define 

a 0 == 8 - Sv S == a 0 + al + ... + an' 

al == 81 - s2, sl == al + a2 + ... + an' 

an- l == sn-l - sn' sn-l == an-l + an' 

an == sn - 0, sn == an' 

Let 6~ == {(s)n E JRn I s 2: sl 2: s2 2: ••• 2: sn 2: 01 
== {(s)n E JRnla i 2: 0 & L, a i == s} 

and write X/>5 for the characteristic function of 
this set. n 

Lemma 2. 6: With the notation of Theorem 2.1, 
let f, f[ E JC: Then 

«(j - S~(s)f,g) == f dS I fl dS2 ••• 105
"-1 dSn 

x (Q-S(aJp-'" P-S(an)f,g\ == J X~{(s).) 
'(Q-S(a 0)15 - ••• P-S(un )f, g)d(s)n' 

Proof: (Q-S~(s)f,f[) 

== (Q-.Fas 
dSl(S(aorp-S~_I(sl)f),g> 

== ~ dSl<Q-S(ao)p-S~_I(sl)f,g) 

== .Fa
s 
dSl(P-S~-l(Sl)f, (Q-S(uo))*g) 

== .~s dS l faSl 

dS2(P-S(adJ5 - S!-2(s2)f, 

(Q-S(uo»*g) 

== f dS l fl ds2(Q'-S(ao)P-S(u l )P-
o 0 

S~-2 (s2)f, g) 

== ••• etc. 

== t dS l t J dS2 •.. '['08
"-1 ds/Q-S(uo)P-

o 0 

••• P-S(on)f,g) 

by Lemma 5 HP 13.3, and since any strong 
Bl'lchner integral is a weak integral. 

The integrand is majorized as (* denotes convolu­
tion) 

i(Q- S(u o)P - ... P-stun )f, g>1 
::s IIQ"-S(s - sl)IIoo·IIp-S(s1 - s2)II oo' ••• 

'!lP - S(Sn )fll· II gil. 

For fixed s > 0 these functions are clearly mea­
surable on JRn. Furthermore, the last term is in­
tegrable on 6 s since its integral is equal to 
(IIQ"- S(·) II 00 * 111>- S (.) /I * ... * II p- s (. )/11 )(s). IIg/i. 
Note that as multiple convolution (*) of integrable 
functions the last of which is continuous this is a 
realvalued continuous function of s. Consequently, 
(s) -> (Q-S(a)'" P-S(on)f,g) is integrable on 
6,:nand by Fubini's theorem the iterated integral 
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equals the multiple integral of the assertion in 
Lemma 2. 6. / / / 

Note also, that in case S( .) is uniformly continuous 
the estimate 

!(Q-S(O",,) ••• P-S(O"n)f,g-)! 

5 (IIQ-s(·)11 "" * ... * IIp-S(·)1I oo)(s)-ll fll·11 gil 

shows that Fubini' s theorem applies to the iterated 
norm-B6chner integrals defining S~ (.) and there­
fore 

Q-S~(s) = r XLls Q-,S(oa)'" P-(on)d(s)n' 
- n 

Gurullary 2.1: If P E <Ps (li) then SP(.) is a 
symmetric semigroup. 

Prouf: By Theorem 2. 1, it is sufficient to show 
that all S~(s) ar~ symmetric, which in turn is 
equivalent to <S~(s)f,f) being real for all f E X. 
By Lemmas 2.5 and 2.6, 

<S~(s)f,j> = J Xt>~<S(o a)·PS(ol)··· PS(on)f,f> 

and 

<S~(s)f,j) = I xA:(f,S(aa)PS(a1)",PS(on)f) 

::= J XLl S(S(On)P*S(On-1)P*", P*S(oo)j,j) 
n 

::= J XAS(S(an)PS(O"n-1)P", PS(oo)f,f) 
n 

::= f XAS(S(oo)PS(CT1)'" PS(an)f,j) . n 

::= (S~(s)f,j). 

The last step is allowed due to the symmetric form 
of the domain of integration 6~: = {(sn)n!a i ~ 0 
60"i ::= s}./// 

3. PERTURBATION OF GIBBS SEMIGROUPS 

The results of Sec. 2 do not permit us to conclude 
that SP(.) is a Gibbs semigroup, if S( .) is. Nor is 
it valid to conclude that 

tr3C(SP(s)T)::= "0 tr (S~(s).T) if T E <B",,(X). 
n2:0 

Throughout this section, S( .) will b~ a...siven Gibbs 
semigroup on X with Hamiltonian H. P will be 
any element of <P(li). Q will denote either P or 
11!1)ff' 6~, Si' a i' S~( .), and sP (.) retain their pre-

vious meaning. By Proposition 2, Theorem 2. 1 
.!!i) ap"plies and hence by (iv) all functions s -> 
Q-'S~(s) are norm continuou~on lR+ and inte­
grable on compact subsets of R+. Also in terms 
of (norm) B6chner integrals, 

Q-S~(s)::= J Xl>~Q-S(oo)'" P-S(an)d(s)n' 

Lemma 3.1: Assume T E <B",,(X) and let (f) = 
U mh,sm:SM<<J<" (g) ::= (,!?"mh:sm:=M<"" be anyortho­
normal sets in X (M variable). 

(i) T E (p,l (X) if and only if T 

M 

== sup II: (Tfm,gm)l<ce. 
(j) (g) m=l 

(ii) If T < 00,ltr3C(T)I::;IiTI1 1 = tr3C(T*T)1/2::= T. 

(iii) If T E CBt(X), 05 tr3C(T)::= IITIl1::= T < 00. 

Proof: (i) If T < 00, then 

is (absolutely) convergent for any orthonormal 
base (hn }n?l of X and T E ill l (X) follows. Conver­
sely, if 0 7- T E ill l (X), then T has a normconver­
gent representation 

with orthonormal sets (hn)n?!> (h~)n?l and tn > O. 
M 

! J;l (Tf m,gm) I 

::= 1[;1 k tnUm' h,.)<h~,gm)! 
M 

5 ~l tn! J;l <J m' hll)<h~ ,g m) I 
5 fu tn ::= IITll1 < 00. 

Taking f,,, = hm and gm ::= h;n for m ~ 1, 

M M 

sup I :0 <Thm,h~>1 = sup E tm = IIT11 1 • 
M<OO m =1 M<oo m =1 

(ii) and (iii) are obvious. / / / • 

Lemma 3.2; For any S > 0, Q-' S~ (s) is in 
ill1 (X) and 

IIQ-·S~(s)1I1 

5 J Xl>sll'Q-S(oo)···p-S(un )1i 1 d(s) < ce. n n 

Proof: Let (f) and (g) be as in the previous 
lemma. Using lemma 2.6, we have 

M 1111 (Q-' S~(s)fm,gm) I 

5 J XA; It1 (Q-S(u o )'" 

P -S(an )/ m' g m> I d(s)n 

::s J Xt.s iiQ-S(aa)" .]5-S(on)1I 1 < 

It 

Note, that for any (s)n E. 6J, there is at least one 
index j with OJ ~ S/(lI + 1), since otherwise 
o OJ < s. 

Define 

6~.1I = {(s),. E 6~la,.? S/(lI + 1}}, 

6~."-l = {(s)" E. 6~lu" < S/(lI + 1},0,._1 

? s/(n + 1}} 
) 
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il~.j = {(s)n E: il~lan < sl(n + 1), ••• , 

(TJ' + 1 < s I (n + 1), a. 2: s I (11 + I)} 
J I 

il~.o = {(s)n E il~ I an < sl(n + 1), ..• , 

00 2: s/(n + In. 
n 

Then il~ = j"d
o 

il':,j as a disjoint union and 

n 

Xt:. s = .~ Xt>S., 
11 J-O n.] 

Let j > 0; then on il~.j: 

II 'Q-.S(ao ) ., .P-S(an ) II 1 

:'S IIQ-S(ao)/Ioo •• , IIp-S(aj _1 ) 1100 
'11]5-S(a)1I 1 ·· ·IIP-S(an)ll oo • 

Note that a j -> II P - S (a j ) 111 is generally noninteg­
rable at O. However on il;.1' aj 2: s/(n + 1) > 0 
and this singularity will not contribute. Since the 
factors on the right- hand side ar-e continuous and 
integrable on il~. i' it fpllows that the dominated 
function is integrable there. Proceeding similarly 
for j = 0, one deduces 

fils d(s)nll'Q-S(a o)" .P-s(an) 111 
n 

n 

=6 fils d(s)n/lQ'-S(a n)'" 
J=O n,l 

]5-S(an )1I 1 < 00. 

Varying (f) and W) in the. first estimate and using 
Lemma 3.1, Lemma 3.2 follows'; / / 

Lemma 3.3: lR-+3 s -> Q-·S!(s) is /1.11 1 -
continuous. 

Proof: This is true for n = 0 by assumption. 
Assume Lemma 3. 3 holds for 1 :'S j :'S n. Fix 
50 > 0 and choose 6 > 0 with So - 26 > O. 

Let s v s 2 satisfy So - 6 < s i < So + 6, i = 1, 2. 

II 'Q-. S!+1(S2) - Q-S!+1(SI)1I 1 

= II f S2
d5 Q"-S(52 - S),]5-S!(5) 

o 

- j S

ldsQ-S(SI- 5 )'P-s!(s)ii 1 o 
5 -26 

:'S II f 0 ds Q"-[S(s2 - s) - S(SI - s» o 

'P-~(5)lIl 

+ II 152 
ds Q-S(S2 - s)P-S:(5)1I 1 

50 -26 

./IP-S!(5)II oo 

+ ),52 dsIlQ-S(s2- S )// ·//p-SP(s)//l 
~~6 00 n 

The integrand of the first term is dominated by 

which is integrable on [0, So - 26]. As Sj ~ So the 
integrand of this term tends to 0 for every s ~ [0, 
So - 26] due to the //. // c continuity of s -> Q- x 
S(s') at s' = So - S > 6 > O. Hence the first inte­
gral converges to 0 as s i ~ So by the dominated 
convergence theorem. 

The second integral is dominated by 

. J36 ds//Q-. S(s)//oo' 
o 

The first factor in this expression is finite by the 
induction hypothesis and decreases with 6, while 
the second factor goes to 0 as 0 ~ O. 

The third integral is treated analogously. Thus, 
given E> 0, find 0 > 0 small enough to hold each 
of the last two contributions below tE and then 
choose s l' S 2 close enough to So to depress the 
first term below tE also. By the preceding esti­
mates this shows continuity for j = n + 1 and 
hence induction takes care of any n./ / I 

Proof: Let U m)m >1 be a CONB of JC and let 
EM denote the projector onto the subspace spanned 
by the first M elements of this basis. Clearly, 
EM 7' Ix as M ~ 00: 

trJC (T Q'- Sf(s» 

= lim tr:dE lid T Q-Sf(s» 
M->oo 

lid 

= lim [:; j 5 d(s)" < TQ-S(ao ) '" 
lid->oo m=l ll.n 

J5-S(a,,)f m'/ m> 
= lim I 5 d(s)n trJC (EM T Q-S(ao ) • " 

M ..... oo An 

Now 

I f s d (S)" try,:{EM TQ- S(a)' .. P - S(an» I 
ll.n 

:5 fll.
S 

d(s),./1 EM TQ-S(a o )" • P-S(a,,) 111 
n 
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::s fb.~ d(s)n IIE M lloo.IITlloo .IIQ-S(<7o) ... 

x P- S(<7n) II 1 

::s fA~ d(S)nIlQ-S(ao) ••• p-S(a,,)II1. IITII 00 < 00, 

with the last term independent of M. 

Thus the integrands in the trace formula are 
bounded by an integrable function independently of 
M. By the dominated convergence theorem the 
limit M ~ 00 can be interchanged with the integral 
and the lemma follows. / / / 

Collecting these results we have: 

_ Theorem 3. 1: The functions IR + 3 S -> Q­
S:(s) are ffi1 (X)-valued and 11.11 1 - continuous. 
They allow the estimates 

n 

If T E ffioo·(X), 

trX<TQ-S~(S)) = f b.~ d(s)n trX<TQ-S(<7o)··· 

n 1'-S(<7n». 

Lemma 3.5: Assume P is bounded and T E <Boo (X). 
Then for s >0 

_ _ (II p-II ·s)n _ 
Itr3C'(TQ-S~(s) l::s nl . II TQ-lloo·trJCS(s) 

~;Q-S~(S)lIl ::s (IIP-!~ ·s)n IITQ-lloo·1I S(s) II l' 

Proof: ~nce-'I TQ-S~(s)lll is finite and equal 
to I trJC( WTQ- S: (s) I for a suitable isometry W on 
JC, the second inequality follows from the first. 

If Ai' i = 0, 1, ... , n, are elements of ffioo(JC), Gini­
bre and Gruber13 have proved the formula 

ItrJC(Ao ·S(<7o )A1 • •• A" .S(<7,,)) I 

::s II Ao 1100 . 

where 6 i"=OO"i = s. 

Then, using Theorem 3.1, we have 

ItrJC(TQ-S~(s)) I 

= I fb.s d(s)n trx (TQ-S(<7o)· ... ·p-S(O'n» I 
n 

* Supported in part by grant GP No. 18641 of the NSF. 
1 J. M. Cook, Trans. Am. Math. Soc. 74, 222 (1953). 
2 T.Kato,Perturbation Theory for Linear Operators (Springer, 

New York, 1966). 
3 D.Ruelle in Applications of Mathematics to Problems in 

Theoretical Physics, Summer School 1965 Cargese, CorSica, 
edited by F. LurlOat (Gordon-Breach, New York, 1967). 

~ D. Ruelle, Commun. Math. Phys. 3,133 (1966). 

::s fAnS d (s)" II TQ-ll oo • II p -II~· trJCS(s) 
n 

<_ II T-Q-II . (liP-II"" ·s)n S( ) 
00 n! trJC s, 

since f b.s d(s)n 1 ~ s~ . / / / 
n n.. 

Theo!,em 3.2: Let P and T E <Boo(X). Then SP(s) 
= 6 S:(s) is II· Ill-convergent and 

n .?O 

trJC(TS.P(s» = 6 trJC(TS!(s)). 
n.?O 

Proof: By lemma 3. 5, 

::s trJC(S(s)· 6 
N'f.n'f.Nr <00 

(lip -II . s)" 
"" 

n! 

so that N->6o~n~N S:(s) is a Cauchy sequence in 
II . 111. By the completeness of <Bl (JC)j;it converges 
to a limit in ffil (JC) which has to be S (s). The 
second formula follows, since <21 (X) 3 S -> trx(TS) 
is II· Ill-continuous. / / / 

4. CONCLUSION 

Theorem 3.2 should ~e improved, since the re­
striction to bounded P is too severe. Since all pre­
vious results in Sec. 3 are derived without this 
assumption onl] the convergence proof for the 
series ~ n > 0 S: needs to be extended, however. The 
difficulty in doing this stems from the fact that in 
cases of interest s -> II Q- S (s) 111 is generally not 
integrable at 0, even though S -> IIQ"-S(s)II is 
(by assumption). "" 

The individual terms of 6 S! are in general not of a 
definite Sign, so that 

A -> trx<AS~(s)) 

= 6 trJC(AS,f(s» = trx(AS6(s» 
n~O 

N 

+ lim 6 trJC(AS~(s» 
N-+OO n=l 

and only the first term is a state. Thus the per­
turbed state is approximated in the set of continu­
ous linear functionals only and not within the set of 
states, as one might wish. 

This development is applied to sell-interacting 
fermion systems in a forthcoming paper. We ex­
pect to deal with hosons systems in a similar 
fashion. 

5 S. Miracle-Sole and D. W. Robinson, Commun. Math. Phys.14, 
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6 The basic reference for semigroups of interest is E. Hille 
and R. S. Phillips, Functional Analysis and Semigroups,re­
vised edition (Am. Math. Soc., Providence, R. 1.,1957). 
Our detailed references will generally be given as HP a.b. 
which will refer to Sec. a.b. of this treatise. 
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The procedure of finding the states, which minimize the uncertainty product of two noncompatible obser­
vables, leads to the study of the approximate point spectrum of a non-self-adjoint operator. The spec­
trum of a large class of such bounded non-self-adjoint operators is studied. The results are applied to 
the theory of the oscillator phase operators. 

I. INTRODUCTION 

The question "what sort of states is associated with 
the minimum uncertainty product (AA)·(t..B) of two 
noncompatible observables, represented by the 
self-adjoint operators A and B in Hilbert space" 
was one of the earliest problems of quantum mech­
anics. This problem arose recently in the theory 
01 the osCillator phase operators l - 4 C and S 
("cosine" and "Sine") and was studied for a simple 
model of phase operators C and S. 

In order to extend the results1 ,2 for the uncertain­
ty product (aC)(aS) of the "simplest phase opera­
tors" to a large class of physically motivated 
generalized phase operators C and S, we have been 
led to study the uncertainty product (AA)·(t..B-) for 
a class of bounded observablesA and B. More spe­
cifically, the procedure of finding the states, which 
minimize the uncertainty product of two observ­
abIes leads to the study of the spectrum of a non­
self-adjoint operator T = rM + M* (r '" 1). In this 
paper we study the spectrum of T for the class of 
hyponormal operators M. 

The results, having a quite general character, are 
applied to the case mentioned above. 

In Sec. II we formulate the problem and derive the 
general form of the non-self-adjoint operator T. 
The point spectrum of this operator is associated 
with normalizable states, which minimize the un­
certainty product (AA)·(t..B) of the observables A = 
(M* + M)/2, B = (M* - M)/2i, and the continuous 
spectrum is associated with normalizable sequen­
ces, which tend to minimize the uncertainty pro­
duct and which we call "minimal uncertainty se­
quences". 

In Sec. ill we prove that if Mis hyponormal, then 
T and M have the same minimal uncertainty se­
quences. This result is very useful for the deter­
mination of nonnormalizable states minimizing an 
uncertainty product. 

In Sec. IV it is found that if the spectrum of M has 
the same structure as the spectrum of the unilate­
ral shift operator V, then the spectrum of T has 
the same structure as the well-known spectrum of 
the operator rV + V*, provided that the spectrum 
of T satisfies certain conditions. 

In Sec. V the above results are applied in the theory 
of the oscillator phase operators. 

II. FORMULATION OF THE PROBLEM 

The procedure for the determination of states, 
which minimize the uncertainty product (AA)'(aB) 
of two non compatible observables A, B, is the 
following. 

Let ABf - BAf = iCf, wheref E D[(A,B)], the defi­
nition domain of the commutator [A,B] = AB­
BA. Denote by (A) the expectation value (A/,j) for 
Ilfll = 1 and set Ao = A - (A), Bo = B - (JJ), To = 
Ao + ipBo' To* = Ao - ipB. Then ToTo* = A~ + 
pC + p2B~ and assuming that 

IIAofl1 ;Fe 0, liB of II ;Fe 0, (Cf'!) ;Fe 0, (1) 

we get 

II To*f 112 = (f, ToTo*j) = IIAof 112 + p211Bofl12 + p(C) 
(2) 

~or ev~ry real P. Thus (C)2 - 411Aaf112. liB of 112 :s 0, 
I.e., With M = IIAofll, t..B = IIBofll, we have 

(AA)2 '(aB)2 ~ t (C)2. (3) 

Setting p = - (C)/2I1B of 112 in Eq. (2), we obtain 

II 
* 2 _ 411Aof 11 2'IIB of 112 - (C)2 

T 1\\ - 4\1Bofl12 • (4) 

We are interested in states which minimize the un­
certainty product (3), i.e., according to (4) we are 
interested in the following. 
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The procedure for the determination of states, 
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following. 
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nition domain of the commutator [A,B] = AB­
BA. Denote by (A) the expectation value (A/,j) for 
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pC + p2B~ and assuming that 
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(1) normalizable states, which are eigenstates of 
T* with eigenvalue zero and 

(2) normalizable sequences {f,.} such that 

lim liT; f,.11 = 0 as n ~ 00. (5) 
Setting 

y = (C)/2'IIB ofIl 2 , (6) 

the relations liT; f II = 0 and (5) take the forms 

Af + iyBf - Xlf= 0, X = (A) + iy(B) (7) 

and 
lim II(A + iyB - XI)f,.1I = 0 as n -? 00. (8) 

In previous work,1,2 Eq. (7) was considered as an 
eigenvalue equation with three free parametersy, 
ReA, and ImA. In the following we consider the 
spectrum of the operator 

L = A + iyB, (9) 

with the free parameter y. According to the rela­
tions (7) and (8) we are interested in the approxi­
mate point spectrum of the operator (9), i.e., the 
points A in the spectrum of L, for which the opera­
tor L - AI is not bounded from below. In particu­
lar, we are interested in the point spectrum of L, 
i.e., the eigenvalues of L. 

We set M = A - iB, M* = A + iB. Then L = 
t[(1- y)M + (1 + y)M*] = [(1 + y)/2]'T, where 

T = rM + M*, 

r=(1- y )/1+ y ) 
(10) 

Due to (1) and (6) we have r '" 1. Thus, we have to 
study the spectrum of a non-self-adjoint operator. 
Since the approximate pOint spectrum of every 
operator is not empty it follows that: 

we see that T is also hyponormal, i.e.1I1Tf II ~ 
IITj* II in case r > 1 (and IIT*f II ~ liT! I in case 
r < 1). 

Let X = lJ£i'P, <p E [0, 21T], and 1-1 ~ 0 such that {f..}~ 
is a minimal uncertainty sequence for M, i.e., lim 
II(M - lJi'" I}f,.11 = 0 as n -? 00. Then, since M - AI 
is hyponormal, we have 

II(T - {Y/.Le i '" + lJe-i"'}I)fn II = Ilr(M _lJ£i'l'I)f,. 

+ (M - 1J£-;'PI)f,.11 ::;: rll(M - IJ£ i'PI)f,.11 

+ II(M* - 1J£-;'PI)f,.1I 

::;: (r + 1) II(M - IJ£ i"'I)f,.11 ~ 0, 

i.e.,f,. is a minimal uncertainty sequence for T. 

Let conversely limll(T- IJ£ ;'P)f,.11 = 0 as n -? 00. 

Then, from the relation 

M = [1/(r2 - 1)](rT - T*), 

we have 

(M - kI)f,. = [1/(r2 - 1)] [r(T - Jl.ei'l'I).t" 

- (T* - lJe-i"'J)f,,] 
where 

k = [1/(r2 - 1)] (rlJei'" - lJe+P) 

Since r > 1 and II(T* - lJ£-i"'I)f,.11:::: II(T -IJ£ i"'I)f,.II, 

we have 

II(M - kI)f,.II::;: [1/(r - 1)] II (T - Jl.ei'PI)fn II ~ o. 

(The proof for the case r < 1 is similar). 

We observe that if the appro~imate point spectrum 
of M covers the entire unit disk, then the approxi­
mate point spectrum of T covers the entire elli,pse: 

There exist always normalizable states or norma- X = rei'" + e-i'P, 0::;: <p ::;: 21T. (11) 
lizable sequences of states or both, minimizing the 
uncertainty product (3). IV. A THEOREM FOR THE SPECTRUM OF T 

m. MINIMAL UNCERTAINTY SEQUENCES 

In the following we shall study the approximate 
point spectrum of T for a large class of bounded 
non-seH-adjoint operators M. This class is the 
class of hy,Ponormal operators, i.e., operators for 
which IIMf 1\ 2: 11M *f II for every f or equivalently 
the self-commutator M*M - MM* is nonnegative. 

Definition: A (nonconstant) sequence of states 
f" is called a minimal uncertainty sequence for T 
if there exists a X such that lim II (T - AI) J,.II = 0 as 
n -? 00. 

Theorem 1; If r > 1 (r < 1) and Mis hypo­
normal, then M and T(T*) have the same uncer­
tainty sequences. 

Proof: From the relation 

T*T - TT* = (r2 -1)(M*M - MM*), 

Let M be a hyponormal operator (M*M - MM* ~ 0), 
whose spectrum is the entire unit diSK, and let us 
assume that: 

(a) The spectrum of M has the same structure as 
the spectrum of the unilateral shift V, i.e., the 
interior of the unit disk is the residual spectrum 
and the periphery the continuous spectrum of M. 

(b) The interior D and the boundary R of the 
ellipse (11) .are included in u(T), the spectrum of T, 
i.e., 

D U R S a(T). (12) 

As we shall see later, Assumption (b) is always 
satisfied if the operator M - V is compact. It also 
follows easily, as in the proof of Theorem 1, in 
case the spectrum of M is purely continuous. 

Under the Assumptions (a) and (b) we shall prove 
the following theorem: 
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Theorem 2: R is the continuous spectrum of T 
and D is in case r > 1 the residual spectrum and 
in case r < 1 the point spectrum. 

The proof is divided into six lemmas. 

Lemma 1: D U R = aCT). 

Proof: Denote by WeT) the closure of the 
numerical range of T and set 

(Mf,/) = /-f£ i'i', ° =:; J.I =:; 1, ° =:; cp =:; 27T, Ilf II = 1 

[this is possible because for hyponormal opera­
tors5 

11M II = spectral radius of M == max I X I : X E a(M)]. 

Then (M*f'!) = (J,M/) = (Mf'!)* = J.le-i'i' and be­
cause of (10) (Tf'!) = r/-f£ i'i' + /-f£-i'i', J.I E [0, 1], 
cp E [0, 27T]. Thus 

Proof: If there exists a point in the residual 
spectrum of T, it must be an eigenvalue of T* = 
r(l/rM + M*), i.e., we must have (l/rM + M*)f = 
Xf for somef and l/r> 1. This is impossible, 
because of Lemma 2. 

Corollary: For r < 1, T has a purely approxi­
mate point spectrum. 

Lemma 4: Eigenvalues of T on the boundary R 
of the ellipse (11) do not exist. 

Proof: If r > 1, Lemma 4 follows from Lemma 
2. If r < 1, assume that Tfo = Vo, X = rei'i' + e-i'i', 
cp E [0, 27T]. Then since T has a purely approxi­
mate point spectrum, the value X * must be an 
eigenvalue of T* because if X * belongs to the con­
tinuous spectrum of T * , then 

° = {f, (T - AI)fo) = « T* - X * I)f'!o) for every f, 

Le.,!o = 0. 

WeT) S D U R. (13) Thus, 

Since always aCT) ~ W(T)~ we conclude from (13) 
that 

aCT) SD U R. (14) 

From (12) and (14) it follows, aCT) = D U R. 

Corollary: R belongs to the approximate pOint 
spectrum of T. 

This follows from Lemma 1 and the fact that for 
every operator the boundary of the spectrum is 
included in the approximate point spectrum (see 
Ref. 6, problem 63). 

Lemma 2: For r > 1 the point spectrum of T 
is empty. 

Proof: Assume that there exists an element f 
such that Tf = ~f or (rM + M*)f = (rJ.lei'i' + IJci'i')f 
J.I E [0,1], cp E [0, 27T]. 

Then 

reM - /-f£ i'i'/)f = - (M* - /-f£-i'i'I)f (15) 

and rll(M - /-f£i'i'I)/1l = II(M* - /-f£-i'i'I)/II. But since 
Mis hyponormal so is M - /-f£i'i'I. Thus 

(l/rM + M*)d = (x* /r)d for some d and l/r > 1, 

which is impossible. 

Lemma 5: For r> 1, every point in D belongs 
to the residual spectrum of T and hence to the 
pOint spectrum of T*. 

Proof: According to the Assumption (b), we only 
have to prove that the operator 

rM + M* - (r/-f£i'i' + /-f£-i'i')I, IJ E [0,1], 
cp E [0, 27T] 

is bounded from below, i.e., 

lI(rM + M* - (r/-f£i'i' + lJe-i'i')I]fll ~ allfll 

for every f and p. E [0, 1] and some positive a. This 
follows easily because of the hyponormallty of M, 
i.e., we have 

lI[rM + M* - (r/-f£i'i' + /-f£-i'i')I]fl1 ~ rll(M - /-f£i'i'I)fll 

-II(M* - /-f£-i'i'I)fll ~(r -l}·II(M - /-f£i'i'I)fll. 

This completes the proof because r > 1 and M -
/-f£1'i'/ for J.I E [0,1], cp E [0, 21T] is bounded from 
below by hypothesis (a). 

or 
II(M* - /-f£-i'i'/)/II ~ rll(M* - /-f£-i'i'I)/1l 

(1 - r)II(M* - /-f£-i'i'I)f II ~ 0. 

Lemma 6: For every r < 1, every point in D be­
longs to the residual spectrum of T* and, hence to 

(16) the point spectrum of T. 

Since r > 1, relation (16) is possible only if M*/ = 
/-f£-i'i'/. But then from (15) we must have Mf = 
/-f£ Nf, which is impossible because the point spec­
trum of M is by the Assumption (a) empty. 

Lemma 3: For r < 1 the residual spectrum of 
T is empty. 

Proof: We have 

lI(rM* + M - {r/-f£i'i' + /-f£-i'i'}I)f II 

~ II(M - /-f£-i'i'I)/1l - rll(M* - /-f£ i'i'I)/1l 

~ (1 - 1')·11 (M - /-f£-i'i'I)f II. 

Lemmas 1-6 complete the proof of the theorem. 
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V. APPUCATION TO OSCILLATOR PHASE 
OPERATORS 

First we examine the well-known results2 for the 
simplest model of the oscillator phase operators 
C and S {"cosine" and "sine'~. 

The simplest phase operators are the following4~ 

C = (V* + V)/l, S = (V* - V)/li, (17) 

where V is the unilateral shift operator V; Veil = 
ell +1 , n = 1,2, ••• , and {ell}~is the orthonormal 
basis of eigenstates of the oscillator number oper­
ator N: Nell = (n - l)ell , n = 1,2, •.•• 

For the operators (17), we have 

cs - sc = ~'(I - p), (l8) 

where P = VV* projects on the subspace, which is 
the orthogonal complement of the subspace spanned 
by the element e1 (the ground state of N). We have 
M = C - is,M* = C + is,and 

T = rV + V*. (19) 

The spectrum of the operator (l9) is well known 
and can be found in Ref. 7. Also it can be obtained 
with the help of the representation of the operator 
(19) in the Hardy-Lebesgue space (see Ref. 8). The 
spectrum of the operator (19) is the entire ellipse 
(11). For r > 1, the point spectrum is empty and, 
for r < 1, the point spectrum is the interior of the 
ellipse (11). The boundary of the ellipse belongs 
to the continuous spectrum. 

From (t8) and (6) we see that y > 0 (except for the 
states which are orthogonal to e l' in which y = 0)9, 
Le., r < 1. Thus, the point spectrum of (19) is not 
empty, i.e., the uncertainty product of the phase 
operators (17) can be minimized by normalizable 
states. 

Due to Theorem 1, the minimal uncertainty sequen­
ces for the operator (19) are the same as those of 
the unilateral shift V, i.e., they have the form .. 

f,. = n-1 / 2.l,; ei'l'''ek, 0 ~ <{J ~ 21T. (20) 
"=1 . 

The general form of the oscillator phase operators 
"cosine" and "sine" is the following4: 

C = {V*A + AV)/2, S = {V*A -AV)/2i, (21) 

where A is a self-adjoint diagonal operator (A: 
Ae .. = a{n)e

il
), such that the diagonal a{n) ;11!. 0, n = 

2,3,···, converges to unity and the spectrum of 
C and S is the entire interval [- 1, 1]. We have 

CS - SC = (i/2)(V*A2V - AVV*A). 

Thus, if AV is hyponormal, we have y > 0 and r < 
1. The operator (l0) can be written 

T = rAV+V*A = rV+V* + rCA -I)V+ V*(A -I), 
(22) 

where rCA - I)v + V*(A - I) is compact. 4 

Due to Weyl's theorem for non-self-adjoint opera­
tors, the operators (22) and (l9) have the same 
spectrum except for eigenvalues (see Ref. 6, prob­
lem 143). Since operator (l9), in case r > 1 does 
not have eigenvalues, we conclude that the entire 
ellipse (11) belongs to the spectrum of T. 

We now consider the class of phase operators, 
which are constructed from sequences a{n);1I!. 0, 
n = 2,3,"', which converges to unity monotoni­
cally from below. 

Proposition 1: M = AV is hyponormal (M*M­
MM* ~ 0) if and only if the sequence a{n) is abso­
lutely monotone nondecreasing. 

Proof: We observe that the relation MM*­
M*M ~ 0 is impossible. In fact, if it holds, then 
we must have 

[(AVV*A-V*A2V)e .. ,e .. ] = a 2(n)- a2(n + 1) ~O 

for n > 1 
and 

[(AVV*A - V*A2V)e1 , ed = - a2(2) ~ 0, 

i.e., a(2) = a(3) = ... O. The proof of the relation 
M*M - MM* ~ 0 is obvious. 

It remains to prove the following proposition in 
order to apply Theorem 2. 

Proposition 2: For a(n) ;11!. 0, n = 2,3, ••• ,and 
monotonically convergent to unity from below 
the spectrum of AV has the same structure as the 
spectrum of the unilateral shift operator. 

The spectrum of AV was studied in Ref. 10 for 
general classes of sequences a{n). In particular 
for monotonically convergent sequences it was 
·studied in Ref.3. We give below the proof that con­
cerns us. 

Proof: Denote by D and D the open and closed 
unit disk, respectively. Since the operator M = 
AV can be written in the form M = V + (A - nV, 
where (A - I)V is compact, we have according to 
Weyl's theorem 

D S a(M). (23) 

On the other hand, since M is hyponormal, we have 

spectral radius of M = IIMII = 1 

[since lima{n) = 1]. 
Thus 

a(M) SD. (24) 

From (23) and (24) it follows that a(M) = D. 
Since a(n) ;11!. 0, n = 2, 3, ••• , it is easy to see that 
the point spectrum of M is empty. Thus the resi­
dual spectrum of M* is empty. From a relatively 
general theorem 11 concerning perturbation of the 
operator V*, we know that for every compact op-
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erator K the open unit disk D belongs to the point 
spectrum of V* + K. Thus, from M* = V* A = 
V* + (A - I)V*, we conclude that D belongs to the 
point spectrum of M* and hence to the residual 
spectrum of M (since the point spectrum of M is 
empty). We can prove as in Lemma 4 that 15 - D 
is the continuous spectrum of M* and M. 

Conclusion 1: Normalizable states minimizing 
the uncertainty product (AC)(AS) do exist for every 
pair of phase operators C and S, constructed from 
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sequences a(n) "" 0, n = 2,3,···, which converge 
monotonically to unity from below. 

Conclusion 2: According to Theorem 1, the 
minimal uncertainty sequences for T are the same 
as those3 of AV. The knowledge of the continuous 
spectrum of AV(uc(AV) = ei<P, 0 :s cp :s 21T) enables 
us to find easily the minimal uncertainty sequen­
ces from the realization of the equation AVj = 
e i ~f in the space l2 (1, <Xl), i. e., from the solution 
of a first-order difference equation. 

8 E. K. Hantis, J. Math. Phys.ll, 3138 (1970). 
9 Without restriction of the generality, we assume r > O. In 

case that r is negative or in general complex, we write r = 
Irle2ik• Then T = rV + V* = ei'W(lrIV + V*)W*,where W 
is the unitary operator W: We. = e ''''e., i.e., the spectrum of 
T is a rotation of the spectrum of I r I V + V*, rotating by 
k = arg(r/2l. 

10 W. C. Ridge, Trans. Am. Math. Soc. 147,349 (1970). 
11 J. G. Stampfli, J. London Math. Soc. 40,345 (1965). 
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1. INTRODUCTION 

The Hamilton-Jacobi equation forms a bridge be­
tween classical particle mechanics and the quan­
tum mechanics of spinless particles. This bridge 
becomes a computational tool in semiclassical 
quantum theory, or more properly from a modern 
viewpoint, in the WKB approximation in quantum 
mechanics. In fact, one can construct a classical 
potential which, used with WKB, exactly reproduces 
quantum mechanicsL-but the construction is, of 
course, as difficUlt as the solution of the true 
quantum mechanical problem. It is the purpose of 
this paper to show that a very similar situation 
exists for a Dirac electron in an electromagnetic 
field, based upon the relativistic Hamilton-Jacobi 
equation. However, a totally arbitrary field cannot 
now be subsumed by the classical format, with its 
insistence upon coherent phase for the full wave­
function, and we shall spell out in detail the nature 
of the required restrictions. 

2. BASIC SOLUTION 

According to classical relativistic dynamics,2 the 
Hamilton-Jacobi equation for a charged particle 

of charge - e and proper mass m is of the form 

~~ = ~p ~p + ~~, p = 1, 2, 3 (summation convention), 

where ~5 = ~ (~; - ery, ~4 = me, (1) 

and 

The electromagnetic field is given by (A, V) and 
S(x 1> x 2 ,x 3' t;x*) is the two-event characteristic 
function; w(. regard (x*) = (x~,x;,x;, t*) as con­
stant. 

Let us now "linearize" in precisely the same way 
that the Klein-Gordon equation gives rise to the 
Dirac equation, i.e., we introduce the Dirac mat­
rices 

_(~~~) _(~; -oj' a l - , a 2 -

o 1 0 -i 

1 0 0 i 0 0 
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(2) 

as realizations of the quartet of Clifford numbers3 

satisfying the algebraic relations 

(3) 

where CT,.\ will always run over the full set 1,2,3, 
4. We then consider the set of equations 

where u{~ (4) 

and claim that the Hamilton-Jacobi equation (1) is 
the condition under which the set (4) has a solu­
tion. This follows from the fact that det(~51 + 
O!o~o) = det (~51 - O!o~o) (all algebraic relations 
are of even order), coupled with 

(~51 + O!o~o)(~51- O!o~o) = (~~ - ~o~o), 

so that 

det(~51 -O!o~o) = [det(~~ - ~o~o)l]1/2 

= (~~ - ~o~o)2. 

What now is the relationship between (4) and the 
Dirac equation? In fact, for a suitably restricted 
electromagnetic potential, an exact solution of the 
Dirac equation (with initial conditions) can be 
constructed by setting 

1/1 = ue {;fA)S, (5) 

if the spinor u at the same time can be chosen to 
satisfy 

1au au 
C at = O!p axp • (6) 

To see this, we need only observe that the Dirac 
equation 

[ . a eV (Ii a e \ J ,11 act + c + O!p T axp + c AI>) + mC0!4 1/1 = 0 

(7) 

is valid by virtue of (4) and (6) with the definitions 

The requirement that the set (1,4,6) be consistent 
is that the ~ be such that one of the sizable mani­
folds of u which satisfies (4) be a spinor satisfying 
(6) as well. By virtue of (1), one can in principle 
then eliminate the Hamilton-Jacobi S and re­
phrase this as a condition on the electromagnetic 
field (A, V). The first part of the program is very 
easily carried out. Equations (6) are of rank two 
in momentum space and hence are generated by 
two arbitrary functions. This fact may be ex­
pressed in many ways, a convenient one being the 
parametric form 

u=(~ O!o)(} :t - O!p a:)V' 
where (~2 :~ - a~p a!J v = 0, 

(8) 

and it suffices to give v two nonvanishing compo­
nents. Given the ui ' relation (4), written out as 

U4(~1 - i~2) + u3~3 = ul(~5 - ~4)' 

u2(~1 + i~2) -u4~3 = u2(~5 - ~4)' 

u2(~1 -i~2) + ul~3 = u3(~5 + ~4)' 
ul(~l - i~2) - u2~3 == u4(~5 + ~4)' 

(9) 

(10) 

The final step of eliminating S from (10) is one 
which we shall consider piecemeal. 

3. RELATION TO WKB APPROACH 

Before proceeding with the reduction of (10), which 
will result in some unusual restrictions, we should 
point out the relationship between the situation 
being analyzed and a number of sophisticated and 
effective works4 on the semiclassical Dirac equa­
tion. In fact, this relationship is most easily 
recognized in the semiclassical or WKB approxi­
mation to the one-dimensional stationary state 
Schrodinger equation 

I/I"(x) + [P(x)2jli2]I/I(x) = 0, (11) 

where P(X)2 = [E - Vo(x)]j2m. 

In one version of the WKB expansion, one seeks a 
solution in the perhaps asymptotic form 

(12) 

of (1). with Ao "" O. Direct substitution into (11) then 
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yields, on equating powers of (iIi)i-2, 

or 

(S')2 - p2 = 0, 

IS" + 2S' d\ A = 0 or \' Txl 0 

(S" + 2S' d~) Aj+1 = Aj, for j 2: 0, 

~ [(S')1/2A ] - !. (S')-1/2A" dx j+1 - 2 j' 

solvable in quadratures. 

On the other hand, one can assume 

(13) 

(12') 

restricting the appearance of Ii to the classically 
unobservable phase factor, and ask for what poten­
tial 

2 
V(x) = ~ Iii Vjx) 

o 
(14) 

the postulated solution is, valid. Direct substitution 
now affirms that the expression for Ao and S in 
terms of V 0 is upchanged, and that V 1 = 0, but that 
one has an additional quantum mechanical modifi­
cation 

V2(x) = (1/2m)[Ao(x)/Ao(x)] (15) 

in order for the simple semiclassical form to 
hold. We can then judge whether this is to be re­
garded as a small correction or not. 

In the same way, the Dirac equation (4) may be 
examined from two points of view. The WKB ex­
pansion consists of setting 

1/t = I; (ili)i u (j)e ut-->s, (16) 
o 

resulting at once in the sequence of relations 

(- ~51 + ap~p + a4~4)u(O> = 0 

(- ~5[ + ap~p + a4~4)u{j~tl = (a·at - ap aa \It(j), e x-;J (17) 

where the notation of (1) has been used. These 
can be solved sequentially when the Hamilton­
Jacobi equation for S is established, the two arbi­
trary functions at each stage being determined by 
consistency for the following stage. In the alterna­
tive viewpoint, we choose 

1/t = ue (i!1f}S, 

V = v<o> + IiVW, Ap = A~ + IiA~, 

and find on substitution into (4) that 

(- ~\Q)l + ap~~ + a4~~O»u = 0, 

(18) 

(19a) 

I~ - a ~)u = ie (VW[ - AWa )u. (19b) 
\aet p axp e p p 

Since u,from (19a),depends upon two arbitrary 

functions, VW and A~ are not uniquely determined, 
although the choice u = u (0) from (17) is a very 
natural one. Instead, we are allowed the option of 
choosing the parameters in u to minimize a de­
sired phYSical effect of VW and A~tl. It is our pur­
pose in this paper to carry this quest to its ex­
treme and ask under what circumstances the quan­
tum corrections VW and A~ can be set equal to 

zero. Then indeed (19a), (19b) reduce to (4) and (6). 

4. THE ONE-DIMENSIONAL TIME-
DEPENDENT PROBLEM 

As prototype, albeit a very restricted one, let us 
consider a Dirac electron in a one-dimensional 
time-dependent potential V(z, t), where x3 = Z. In 
the notation of (1), then, 

as 
~ 1 = ~2 = 0, ~3 = az ' ~4 = me, 

as e (20) 
~5 = act - c V, Ap = O. 

The first two equations of (10) tell us that 

~slme = (u1 + u5)/(u1 - u5) = (u~ + u~)/(u~ - u~). 

Thus (uiu 3 )2 = (u 2/u4)2. Since u 1/u 3 = u2/u4 is 
inconsistent with (10), we have 

(21) 

It then follows from (10) that 

as = ~ me, ~ _ ~ V + U2 + 1 me 
az U2 - 1 act - e U2 - 1 ' 

(22) 

an integrable system if 

e av a 2U a U2 + 1 
---=- ----- --- (23) 
me2 az act U2 - 1 az U2 - 1 

Now the condition (6) in the present case becomes 
simply 

au 1 aU3 au3 aU 1 
act = Tz' act = az ' 

Hence 

u 1 =f(z + et) -g(z - et), 

u 3 = f(z + el) + g(z - el), 
(24) 

for arbitrary f,g,and we may choose,e.g.,u2 =u1 , 

u 4 = - u 3 • On substituting into (23), we arrive at 
the parametric representation 

e av -----
me2 az 

= g(z - el) f'(z + el) + f (z + et) g'(z - el) , 
f(z + et)2 g(z - etf 

(25) 
of perhaps unEfxpected generality considering the 
imposition of the condition Ap = O. 
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5. STATIONARY STATES 

A class of problems of much greater interest and 
utility is that of the stationary states l/I ex eEt/ i1£, 

where E is then the total energy. According to (5), 
we can then write S -) S - Et, and all remaining 
quantities will be time independent. It will be 
helpful to use a somewhat more compact notation, 
namely, 

u = (~), where v = (:D' W = (:!) . (26) 

Then Eq. (4) becomes, with; the vector of compo­
nents ~1' ~z' ~3' 

-6) , 
(27) 

1 
~s =--(E +eV), c 

and Eq. (6) (for time independence) 

0 0 Vv = 0 = ° °Vw. (28) 

To solve (27), we observe that (with the prime de­
noting transpose) 

is the 2 x 2 identity matrix for any v, w. Hence 

~0C7 = ~ooI 
= Ws - ~4)vv' - (~5 + ~4)ww']az/v'azw, 

and from the algebraic identity 

~ = ~ Tr(J(~ 00) (30) 

it follows that 

~s - ~4, ~s + ~4 , 
~ = 2 ' V azov - 2 ' wazow, (31) v a2w v a2w 

which can be identified with (10). 

It 'will be a bit more convenient to introduce the 
variables v = v + w, W = v - w. Then (28) and 
(31) read explicitly 

VS +~A 
E + eV u/azrW me w'oziW + v'azrW = -- + - ---=-::=---:::--=--

e w'azv 2 w'azv 

where ° ° vii = ° ·Vw = 0 (32) 

Regarded as a set of three equations for S, (32) is 
integrable if its curl is an identity. Since E = 

- VV,B = V x A, we thus have 

ul'a2C7v (E) w'a20v 
B==--=xE+ V+- vx-=--=-

w'azv e w'azv 

me2 w'a2oW + v'azciV 
+ - V x (33) 

2e w'azv 

In other words, given the potential V, we have 
available a wide class of magnetic fields depend­
ing parametrically upon v and zo,.and hence upon 
two independent solutions of the Laplace (time­
independent wave) equation. For each such com­
bination of V and B, the semiclassical form (5) 
provides an exact solution to the one-particle 
Dirac equation. 

The relation (33) is hardly transparent, nor is it 
transparently real. The latter can be rectified by 
setting (and is not quite equivalent to) v = a, 
W = a2a*, where a oVa = O. It follows that 
° oV(Jza* = 0, and the result 

B = a+aa X E + Iv + ~\ V x a+aa 
a+a \' e} a+a 

(34) 

is certainly real. Let us consider further sub­
cases. The simplest solution of ° ·Va = 0 is a = 
const. Then (34) reduces to 

13 = ii x E, (35) 

where Ii is an arbitrary unit vector. This problem 
is qUite degenerate since both the invariants 
B2 - E2 and BoE vanish. A more structured case 
involves chOOSing a =f(x - iy)(b). Then 

~ mez 
B=Ex z + 2e V 

x «y + ix) f*(x + .iY) + (y _ ii) f(x - i~») . 
\ f(x - zy) f*(x + zy} 

(36) 

In general, we see from (33) that B = Ii x E + oB, 
but ii can be a space-dependent unit vector and oB 
a function with considerable parametric depen­
dence. 

6. FULL SPACE-TIME DEPENDENCE 

If no special assumption is made as to the nature 
of the time dependence, the solution (34) remains 
valid, with (28) replacedbyilv/iJcl=aoVw, ilw/ilct = 
° . Vv. The integrability conditions for the three 
first-order partial differential equations in four 
independent variables can be found by the standard 
Jacobi elimination5 and are now quite involved in 
form. We shall therefore proceed instead by 
setting up a somewhat less general parametric 
form for the solution to (4). It is based upon the 
well-known! pairs of independent solutions 
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Wp == wO~p/(~4 + ~5)' 
(37a) 

(u 1u2u 3U4 ) = l(-W3 -wl-iw2 -wo 0) 

(- w1 + iW2 w3 0 - w o) 

wp == - wO~p/(~4 - '~5)' 
(37b) 

By using ~4 = me and the Hamilton-Jacobi 
~g - H = ~p~p,the definitions of wp in (37) are 
readily inverted to yield 

± ~p = 2mc wowp/(wowo - w>-.w~J, 

± ~5 = 2mc[wowol(wowo -w>-.w>-.)] - me 
(38) 

with ± for cases a and b, respectively. On the 
other hand, the w's, in addition to satisfying the 
wave equation, are intimately connected through 
(6). We find 

(39) 

for some solution Q of the wave equation. 

• Supported in part by the U.S. Atomic Energy CommiSSion, 
Contract AT(3Q-1)-1480. 
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University of Wisconsin-Green Bay, Green Bay, Wisconsin 
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1 See, e.g., L.l. Schiff, Quantum Mechanics (McGraw-Hill, 
New York, 1955), Chap. VIi. 

2 See,e.g.,J.L.Synge, uClassical Dynamicst in Handbuch der 
Physik, Vol.lll/l (Springer, Berlin, 1960). 
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The standard6 Lorentz metric (1 - 1 -1 - 1) with 
x O == et and ~5 == ~o offers a still more compact 
notation for (38) and (39): 

where ~=o. 
ax vaxv 

Now in the same notation 

as e 
~ =-+-A, 

II axil e II 

im 
w =-

II axil I 

(40) 

(41) 

where Ao = - V. The integrability conditions for 
the existence of a consistent solution S now consist 
simply of the curl of (41), leading at once to 

2mc 2 

Fjljll =±-­
e 

2mc2 
=±-­

e 

(42) 

where F v == aA/ax v - aAjaxli is the electromag­
netic field. For this explicit class of fields, then, 
the Dirac equation is solvable in semiclassical 
form. Of course, since only observable fields 
enter, the result is obviously gauge invariant. 

3 See, e.g., H. Boerner, Group Representations (North-Holland, 
Amsterdam, 1963). 

4 Bargmann, Michel, and Telegdi, Phys. Rev. Letters 2,435 
(1959);R.Schiller, Phys. Rev. 125, 1100 (1962);S.l.Rubinow 
and J. B. Keller, ibid. 131,2789 (1963). 

5 See, e.g., Goursat, Hedrick, and Dunkel, Differential Equations 
(Ginn, Boston, 1971), Sec. 91. 

6 See, e.g., P. G. Bergmann, Theory of Relativity (Prentice­
Hall, New York, 1946), Chap. V. 
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can be used to obtain a Hamiltonian path integral. Finally, we comment on .. similar phenomenon involv­
ing differentials in the ItO integral. 

It is known that the path integral for a particle 
described by non-Cartesian coordinates is compli­
cated by differentials of a kind neglected in most 
other types of integration. As a specific example, 

the path integral for a free particle moving in a 
plane, described by polar coordinates, involves the 
action integral S evaluated along the classifical 
path connecting r 1 and r 2 in a time E: 
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S(r2,Elrl'0):= ;1lrl-r212 

<0: ~ [(r1 - r 2)2 + r 1r 2(ct>2 - ct>1)2 

(1) 

This expression enters the Green's function for 
infinitesimal times, which is ultimately iterated to 
give the finite time propagator. As shown by 
Edwards and Gulyaev,l it is necessary to retain 
terms through the fourth order in Eq. (1), for if it 
or any lower-order term is neglected, the Green's 
function obtained by iteration is wrong! That is, 
it does not propagate solutions of the SchrMinger 
equation. 

The requirement for this degree of accuracy in the 
expansion of the action is quite general. In 1957, 
DeWitt2 formally established the general expan­
sion of the Green's function for curved spaces. 
He begins with the classical system characterized 
by a Lagrangian of the general form 

However, for some purposes this may not be the 
most convenient form in which to express the path 
integral. Terms containing A 3 /6.t and Il 4/ I1t are 
particularly unpleasant. One would prefer to eli­
minate such terms in favor of an approximate 
action of the form S = tci ,l1 il1 j - ul1t, for then a 
resemblance to the usual Jdefinition of the action 
integral is maintained. Merely writing, for 
example, 

(5) 

formally accomplishes this replacement, but could 
give rise to the impression that terms of second 
order in (M) must be retained. 7 This impression 
is false. The basic fact of life about path integrals 
is that only terms of 0(11t) need be retained. In 
fact, one may interpret the path integral as an 
iteration of an infinitesimal Green's function 

e- iHt = (e-iHt/N)N = lim (1 - iHt/N)N. (6) 
N--+oo 

(2) This is based upon the fornial extension of the 
elementary formula 

where !hj is the metric tensor, dots represent 
derivatives with respect to the time t, a and v are 
functions of q and t, and the summation convention 
is adopted. The action function S(q", t" Iq', t') 
may be expanded about the point (q', t') and put in 
the form 3 

5( "t"I't') 1{1 1£+1 !~! q, q, = Ilt 2&j "'""'" ~ij,k"'" u"'" 
i j k I 5 

+ -!2(gij,kl- igmn [ij, m][kl, n])111l1l11 + 0(1l)} 

i 1 a j j 3 
+ ai l1 + ';d2a i ,j + at gij)1l1l - vl1t + 0(1l) 

+ O(Il(M») + 0«llt)2), (3) 

where all functions are evaluated at (q', t'), M 
I 

:= (t" - t'), 11:= (q"i - q'i), subscripts following a 
comma denote partial derivatives with respect to 
the component indicated, g m n denotes the inverse 
of the metric tensor, and [jk, i]:= t (gj ',k + &k,' -
gkj,j)' In Eq. (3) we have simplified D~Witt's J 
summations. 

Extending the earlier work of Van Vleck, 4 

Morette,5 and Pauli; 6 DeWitt showed that, when 
exponentiated and iterated, the expansion (3) is 
sufficiently accurate to yield the propagator K of 
the Schr1>dinger equation. Explicitly he obtained 

K(x", t"lx', t') =Nlim f dnql ••• f dnqN_l 
--+00 

X G~~ [g(qj, t j »)1/2) (27riil1t) nNI2 

X exp [i-G~ S(qj' tj Iqj-l' tj - 1 ) + ~Rf1t)J, (4) 

where g is the determinant of the metric tensor, 
R is the curvature of the space, I1t == (t" - t')/N, 
tj = t' + jl1t, S is the truncated expansion (3), and 
qo == x', qN == x" • 

eX = lim (1 + X/N)N. 
N .... oo 

(7) 

If x is replaced by x + YN where YN is 0(1/N), the 
same limit eX is obtained. It is this fact which 
forms the basis for neglecting terms of 0«M)2). 
(The fact that H is an unbounded operator causes 
technical difficulties in the application of these 
forml;ll statements; nevertheless, these difficulties 
have been overcome. S ) 

Thus, rather than ask which powers of At explicitly 
must appear in the integrand, the appropriate 
question is which terms in this integrand yield 
terms of O(llt). The answer has been known for 
some time in this and other contexts. 

Here, just as in Brownian motion, the operation of 
N-fold integration yields the relationship 112 = 
O(l1t); that is, the integral transforms terms of 
0(112) into ones of O(llt). In Cartesian coordinates 
this fact may be easily seen. For large N(smaU 
Ilt), the dominant term in the integrand is 

(27rmt:.t) Nnl2 exp[2~~t (~ Irj - rj _1 12)]. (8) 

Considering this dominant term a part of an N-fold 
measure, one immediately establishes that terms 
in the remaining integrand of 0(112) are trans­
formed into ones linear in I1t. Perhaps the clear­
est way to see this is to follow Feynman's original 
argument. 9 For example, consider 

k = 2,4,6, (9) 
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where (XN - xN-l) is the "x" component of (rN 
- rN- l ). Evaluating the Gaussian integrals in 
Cartesian coordinates, one obtains 

[= lim [!it (k - I)!! (ifiN
t

) k/2,J k = 2,4,6, .... 
N-«; m (10) 

Clearly all vanish except k = 2. This term equals 
ifi/m. This calculation shows that (xN - x N_l )2 
acts as if it is O(t/N) = O(.M), when in the inte­
grand of the path integral. lO 

The primary purpose of this paper is to give pre­
cise meaning to these order of magnitude relation­
ships in non-Cartesian coordinates, and, in parti­
cular, to establish that sums of the form ~i ci 6. 4/ 
6.t can be replaced by sums of the form ~i bi6.t, 
where the relationship between ci and bi is explic­
itly given. In this manner, higher order terms in 
the expansion of the action S are replaced by an 
additional potential, and the path integral is con­
siderably simplified. We remark that this replace­
ment is accomplished through the ~ppropriate use 
of certain aspects of curved space path integra­
tion previously considere6 as complicating fea­
tures of the non-Cartesian path integral. In the 
last section we discuss the relationship of this 
work with the Ita integral in the theory of Brown­
ian motion. 

Before presenting the simplification, we mention 
that Arthurs7 has obtained a similar result for 
the specific example of the free particle in polar 
coordinates. His technique differs from ours. By 
quantizing a Hamiltonian description of classical 
mechanics, he replaces the fourth-order term 
with one linear in M. 

Derivation of the Effective Potential 

Note that all functions appearing in (3) are evalu­
ated at (q', t'), the "left-hand end point". Evaluat­
ing these instead at the "midpoint" (q' + q")/2, 
(t' + t")/2], we obtain 

S(q", t" !q', t') = ;t Hgii 6. i6.i 

+ ~ (gii,kl- 2gmn(ij, m](kl, n])6. i6.i 6. k6.l} + a j 6. j 

- v6.t + o(~;) + 0 (6. 3 ) + 0 (6.. (6.t» + O«6.t)2). 
(11) 

Notice that terms of the form 6. 3 / 6.t and 6. 2 do not 
appear in (11). 

Lemma 1: The following are identities: 

(a) i:'" 1: dxl .•• dxn dxn exp(21f~i)gijXjXi 
= (21Ti1i6.t)nf2 g-lf2, 

(b) 1«;'" to dx l ... dxn 
-00 -00 

= - n 2 (6.t)2 (21Tin6.t)n/2 g-l/2 [gaBgYc5 

+ gaygBO + ga~BJ'1, 

where cr, (3, y, 6 = 1, 2, ... , n and where the g i' are 
fixed constants. These identities are proven by 
diagonalizing the matrix [g i.1 and evaluating the 
resulting Gaussian integral§.lO 

Lemma 2: Let cr, (3, y, 6 be fixed constants 
between 1 and n, 1 ..,;; cr, (3, y, 6, ..,;; n. Define [aByc5(6.t) 
by 

[aByc5(6.t) == (21Tifi6.t)-n/2 J dnq'(g(q', t'»1/2 

where the gaB are evaluated (q", t"). 

To establish Lemma 2, one translates the coordin­
ate system so that the point (q'i, ••• , q~) lies at the 
origin, and, assuming g to be sufficiently smooth, 
expands (g(q', t')]l/2 about (q", t"). One then 
applies Lemma 1 to the leading term in [aByo. The 
remaining terms, being at least O«M)3/2), vanish 
in the limit. Definitions: 

(a) v' == v - a j (6. i/6.t) - 12 n 2 R 

(b) FiJkl == 1s(gii,kl- 2gmn[ij, m](kl, n]) (12) 

(c) F == - n2 Fiikl (giigkl + gikgil + gilgik). 

Theorem: Define J by 

J == (21Tin6.t)-n/2 J dnq' [g(q', t')]l/2 

x exp [(21t~t giJ6.i6.i-~V'6.t) 

x exp(1t!t Fiikl6. i6.i 6.
k
6.l)] 

and [by 

[== (21Ti1i6.t)-nf2 J dnq' (g(q', t')]1/2 

x [exp (vi6.t gii 6.
i
6.i - iv' 6.t) exp(iF 6.t)J. 

where all functions are evaluated at the midpoint 
unless explicitly stated otherwise. Then 
lim [(J - 1)/ llt] = 0 as M -+ O. 

Proof: Consider (J - I): 

(J - I) = (21Tin6.t)-nf2 J dnq'lg(q', t')]1f2 

I i (q' + q" t' -+ t") i , J 
x exp L~ g iJ \ 2 '---r- -Tt v Il.t 

x [exp(i Fii k1 6.i6.~k 6.
1
) - exp(i F 6.~J . 

Expanding both gi' and the term in brackets about 
(q" , t"), we obtain J 
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(J - 1) == (211iIfAt)-n/2 J dnq'[g(q', t')]1/2 

x exp[i (2~tgij (q", t")AiAj - V/At)] 

x(iF.. AiAjAkAI_~FAt) 
11 '1kl At If 

+ O«AtP/2). 

The result follows immediately from Lemma 2. 

This theorem indicates that J and I agree to first 
order in At. Thus, we may replace J by I in the 
integrand of the path integral. Doing so, we obtain 

and where qo = q', q N = q". Equation (13) is the 
main result of this paper. Notice that the inte­
grand contains only a "kinetic energy term, " 
~ g ij (A iAi / At), and u, the "effective potential. " 

Finally, Eq. (13) may be converted into a path 
integral based upon a Hamiltonian rather than a 
Lagrangian description of classical mechanics. 
We restrict ourselves to a flat space upon which a 
curvilinear coordinate system has been selected,!l 
By applying the integral identity 

(211dtt) n/2 exp(ii 1 q' - q" 12) 

== _1_ J d"p expri i(po(ql _ q") 
(2111i)n [11 \ 

_t~~2)J. (14) 

N times, one may establish that (13) is equivalent 
to 

K(q", ttl Iq/, t') 

== ~~ (2!1ifn f dnq1 f d"qN-l f d"Pl 

X f d"PN exp [i RNJ. (15) 

where 

and 
H j : (IPi 12/2m) + u(k). 

As before, all functions are evaluated at the mid­
points. Equation (15) is of Hamiltonian form with 
an "effective" potential u. 

Relation to the "ItO Integral" 

As mentioned earlier, the significance of "high­
order distance differentials" is evident in other 
contexts, in particular in the parallel study of 
Brownian motion. The clearest manifestation is 
in the It6 integraP2 which is analogous to the 
action integral appearing in the integrand of the 
path integral. 1 It6 wishes to define an integral, 

t=1 1 f(x(t, w»dx(t, w), 
t=O 

(16) 

where x(t, w) is, as a function of time t, the posi­
tion of a particle undergoing Brownian motion. 
Here w is a point in the sample space n which 
indexes the various Brownian paths. This integral 
cannot be defined in the sense of stieltj es since 
x(t, w) is not of bounded variation. Nevertheless, 
It6, by breaking the interval [0, I] into N sub­
intervals, defines the integral as 

1 . N ((k _ 1 )) i f(x(t,w»dx(t,w): l.l.m. "Bf x ~,w 
o N-oo k=1 

X [x(~, w) - xt N 1, w) l (17) 

Here l.i.m. is limit in the mean and f is assumed 
to be suitably restricted. l3 Notice that the function 
f is evaluated at the "left-hand end point" of each 
subinterval. A different value for the integral is 
obtained if f is evallf.ited at other points in the 
subintervals. 

With this definition It6 proves the following "funda­
mental theorem of the It6 calculus": 

Theorem (Ito): Let <t>(u) have continuous second 
derivative. Then 

1 
fa cp' (x(t, w)jdx(t, w) 

1 
== <t><x(l, w» - cp(x(O, w» - ~ 1 cp"(x(t, w»)dt 

o (18) 

almost everywhere in n. (This formula presumes 
the diffusion coefficient to be ~.) 

The last term in Eq. (18) arises precisely because 
sums of the form 

do not vanish in the limit, and, because of the 
stochastic nature of the paths, may be replaced by 
sums of the form 

1 
At: N' (20) 
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If the right-hand end point were selected in the 
definition, the opposite sign for the 1/>" integral 
would result. If some average were selected, the 
integral would drop out altogether. In fact, in the 
"Stratonovich integral, "13.14 the midpoint is 
selected. 

In addition to the latter simplication, Stratono­
vich14 noticed another advantage of the midpoint 
selection. Essentially, he uses the "Stratonovich 
integral" to define a diffusion process x(t) as a 
stochastic transformation of a Wiener process: 
The Kolmogorov equation for the probability 
density associated with this diffusion process x(t) 
appears in an invariant form with respect to an 
arbitrary change of variable x ?> i(x). This in­
variance is not obtained if the It6 integral is used 
to define the process x(t). In quantum mechanics 
also, transformation properties dictate the choice 
of summation procedure. If one performs a gauge 
transformation, the new action involves a vector 
potential A = 171/>, and the path integral for the 
propagator may be written symbolically as 

K(x!, til Xi' tj) =pa~ exp(i So + i ~;\7rp o~ dt) (21) 

(now taking If and other physical constants to be 1), 
where -% is the action computed with the old 
Lagrangian. The additional term in the action can 
be written as 

t 
~~ \7rp odx, (22) , 

a line integral along the particular path. Now a 
gauge transformation is known to be equivalent to 
a multiplication of the wavefunction by a phase 
factor. In fact, it is the same as the unitary trans­
formation 
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The continuity of the phase shift and S-wave scattering length as a functional of the potential is con­
sidered. The question is investigated in the present article for sequences of square wells which con­
verge pointwise to zero. The results show certain conditions to be sufficient for convergence of the 
phase shift and scattering length to zero. These results are generalized to certain integral norms. 

I. INTRODUCTION 

Recent investigations on the subject of singular 
potentials1 have employed a procedure of cal­
culating the phase shifts of a potential as the limit 
of the phase shifts of a sequence of potentials 
which converge pointwise to that potential. The 
presupposition underlying this approach is that if 
a sequence of potentials converges pointwise to 
another potential, then the corresponding phase 
shifts are likewise convergent. This assumption 
was called into question through a counterexample 
provided by Calogero2 and others following him, 
as well. This raises the over-all question of the 
validity of such a presupposition for nonsingular 
as well as singular potentials. This question is 
investigated for the class of square well potentials 
in the present article, and for a variety of pbten­
tials in the subsequent article. A more or less 
general solution is presented in that article which 
provides a fresh perspective on certain ideas in 
potential theory. 

We pose the more constructive question as to what 
an appropriate sense of convergence of potentials 
might be that would make the phase shift at any 
fixed energy a continuous functional of the poten­
tial. When will the phase shifts converge uniformly 
for all energies? The same question is also con­
sidered for the S-wave scattering length and for 
bound states. We find the convergence of the 

sequence 100 

dr 1 Vn (r) 1 to be a sufficient but not a 
necessary ~ondition for convergence of the phase 
shifts, though the convergence is not necessarily 
uniform. We find two norms,[O dr rl Vn(r) 1 and 

00 0 
1 dr 1 Vn (r) 1 112 , (the latter only for certain more 
r~stricted classes of potentials), whose conver­
gence is a sufficient condition for uniform con­
vergence ofthe phase shift, and which for repulsive 
potentials can also be shown to be a necessary con­
dition in the neighborhood of VCr) = O. The results 
suggest that the potentials might be viewed as the 
elements of a Banach space with the phase shift a 
functional which is generally continuous. 

We first consider the question of when the con­
vergence of a potential to zero implies the con­
vergence of the corresponding phase shift to zero. 
This question is studied in the present article in 
the case of square wells. In the following article 
the question of when a vanishing potential implies 
vanishing phase shift and scattering length is stud­
ied for general potentials. 

n. ~UARE WELLS 

We consider scattering by a square well located in 
the interval a :s r :s e (e - a ;: b). We adhere to 
the units ii2/2m = 1. If the well is attractive and 
of depth g, one finds as the expression for the 
phase shift 

tano = (k 2 + K2 tanka tanke) tanKb + kK(tanka - tanke) , (1) 
(k 2 tanke - K2 tanka) tanKb + kK(l + tanka tanke) 

where we set K = (k 2 + /g /)1/2. For a repulsive potential of height 0 < g < k 2 located between r = a 
and r = e, one finds [K = (k2 _g)1/2] 

tano = (k 2 + K2 tanka tanke) tanKb + kK(tanka - tanke) • (2) 
(k 2 tanke - K2 tanka) tanKb + kK(l + tanka tanke) 

which is identical with (1) with the replacement K ~ K. For a repulsive potential of heightg > k 2 , one 
finds [y == (g - k2)1/2] 

tanli = (k 2 - y2 tanka tankq) tanhyb + ky(tanka - tanke) . 
(k2 tanke + y2 tanka) tanhyb + ky(l + tanka tanke) 

(3) 

We pose the questions: If VCr) ~ 0 pointwise, under 
what circumstances will it follow that 0 ~ O? ; that 
the scattering length A ~ O? ; that there are no 
bound states? Two extreme cases will be con­
sidered: (i) when the sequence of square wells 
becomes taller and narrower eventually approach­
ing a "spike," i.e., b ~ O,g ~ co, and (ii) when the 
sequence of square wells becomes broader and 

shallower eventually flattening out to no inter­
action, Le., b ~ CO,g ~ O. In all these cases, we 
presume the sequence of potentials to approach 
zero pOintwise. In the b ~ O,g ~ co case, this 
would mean that the center of the well moves in 
such a way that the limiting value of the potential 
at any fixed point is zero. An example would be 
the sequence of potentials 

2525 
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TABLE I. Limiting values for the case b -> O,g -> co with a '" O. 

Case (i), a '" 0 Limiting value 
Sufficient condition 
for no effect 

k '" 0 
Att.or rep. 

k==O 
Att.or rep. 

Bound state 
threshold 

tanG == _ ~ sin2ka 
k + !~ sin2ka 

- ~ == 1/a, 1'/ == 0 
or 

I; = co, 1'/ -> niT + (ag l/2 )-1 

(n '" 0) 

- ~ < 1/a 

TABLE II. Limiting values for the case b -> 0, g -> co with 
a = O. 

Sufficient condition 
Case (i), a == 0 Limiting value for no effect 

k '" 0 tanG = kif 1'/ < ! 1T 
Att. ifn - (n +!1T -figi-1/2 

k '" 0 tanG = 0 
Rep. 

k=O A == 11f 
Att. ifl'/-(n +~)1T-flgl-1/2 

k==O A=O 
Rep:" 

Bound state 1'/ -> (n + ~)1T 
threshold 

V,,(r) == g"e (2:.1 :s r :s 2~~ , 
where 

Always 

I'/<~ 

Always 

1'/< !1T 

)oifr<a 

e(a:s r::s c) == e(r - a) e(c -r) =/ i~ a::s r ::s c, 

(Oifr>c 

with e(x) the familiar step function, unity for non­
negative values of x and zero otherwise. The 
typical potentials of the sequence under considera­
tion will be of the form 

(4) 

and we write bn == cn - ~. The index n will fre­
quently be omitted when confusion is unlikely. The 
openness or closedness of the interval of support 
of the square well is immaterial, and we shall 
generally assume support in a closed interval. 

In what follows, the following limits will interest 
us: 

~ == lim bng,t13, 
" .... 00 

1/ == lim b" Ig" 11 / 2 , (5) 
" .... 00 

C == lim b"g,., 
" .... 00 

where the limiting procedures may correspond 
either to case (i) b --t O,g --t exl or case (ii) b , exl, 

g --t O. 

Case {i),b -+ O,g-+ exl 

In this case it is clear that ~ -+ 0 implies 1/ -+ 0 
which implies ~ -+ 0, and that ~ < exl implies 1/ = 00, 

while 1/ < exl implies ~ = exl. The results of the 
appropriate limiting procedure applied to Eqs. (1) 
and (3) are summarized in Tables I and n. We 
have defined a == lim an = lim cn ' as n -+ 00. 

For the case a -;1! 0, k -;1! 0, one finds as the appro­
priate limiting expression 

tanli -+ _----'~:--s_in_2_k_a_ 
k + t ~ sin2ka 

(6) 

valid for both the attractive and repulsive cases< 
(C is negative in the attractive case). Clearly, the 
vanishing of ~ is a sufficient condition for no 
scattering and is necessary unless ka = mr (n is 
an integer). Since this exception occurs only for a 
discrete set of accidental values of a parameter, 
we shall speak of the nonvanishing of ~ as a 
"necessary" condition for the nonvanishing of the 
phase shift. (The term" sufficient" will be used 
in a similar sense.) We note that 

I~I = lim 100 

drIVn(r)l, 
n .... OO 0 

(7) 

which suggests that the vanishing of the quantity on 
the right-hand side of Eq. (7) might be a sufficient 
condition for no scattering for a general sequence 
of potentials. We shall see in the following article 
that this is indeed the case. 

The finiteness of ~ corresponds to a Ii-function type 
spike, and the phase shift as given in Eq. (6) is 
exactly what one would obtain from a 6 -function 
potential of strength ~ located at r = a -;1! O. The 
condition a -;1! 0 is crucial. 

If we let 1 ~ 1 -) exl in Eq. (6), we find 

lim tanli = - tanka, 
It 1 .... 00 

which corresponds to the phase shift due to an 
infinitely repulsive barrier at r = a. It will be 
noted that the boundary condition u(O) = 0 with 

(8) 

u(r) = rlJ;(r) [lJ;(r) the wavefunction3 ] for the three­
dimensional problem corresponds to a one-dimen­
sional problem with an infinite repulsive barrier 
for r < O. A Ii function of infinite strength, attrac­
tive or repulsive (Le., 1 ~ 1 = (0) at r = a gives rise 
to an infinite slope on the emerging side of the 
potential and therefore to an effective boundary 
condition at r =a of infinite logarithmic derivative. 
This is equivalent to a vanishing wavefunction at 
r = a, which is as if there were an infinite barrier 
at r = a. This is the statement in Eq. (8), since 
generally tano = - tankr 0' where r 0 is a node of 
the asymptotic wave function. 

The scattering length obtained from Eqs. (1) and 
(3) for the case a -;1! 0 agrees with that extrapolated 
from Eq. (6), viz. 

(9) 
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In the attractive case ~ < 0, A has a pole at - ~ 
=: l/a. This is precisely the condition for the 
appearance of the first bound state. One readily 
verifies that the condition for binding a bound state 
with energy 0 in the potential (g > 0) 

is 
V(r) =: -ge(a:::: r:::: c) 

g1/2 tan1) = lla. 

(10) 

(11) 

The weakest coupling solution to Eq. (11) corres­
ponds to 1) ~ 0, which gives the condition \ ~ \ 
= b Ig\ = lla. On the other hand, the other solu­
tions to Eq. (11) all correspond to infinite ~,as 
would be expected in the presence of at least one 
bound state. The other solutions to Eq. (11) are of 
the form 

1) = nrr + (ag1/2 )-1 + o(g-1/2) (12) 

for n ;.! 0, corresponding to finite nonvanishing 1), 
prescribing not a value but a rate of convergence 
to a value of 1). The emergence of 1) in the criterion 
for binding is not surprising in view of the Ll/2 
necessary condition for a bound state4 

trr :::: J dr I V(r) \1/2, (13a) 

or the Bargmann-Schwinger condition 5 

1 :::: J dr r I V(r) I. (13b) 

The quantity on the right of Eq. (13a) corresponds 
to 1), while that in Eq. (13b) corresponds to 1)2. The 
reason that 1) is the significant parameter for 
binding will be discussed subsequently. 

The finiteness of 1) plays the leading role in the 
case that a = O. We first consider the attractive 
case. From Eq. (1), one finds (remembering that 
b =: c, if a = 0) 

k /K tanKb - tankb 
tano = 1 -\. (k/K) tanKb tankb = tan(w - kb), 

where (14) 

tanw = (k I K) tanKb. (15) 

Since b -) 0, a "sufficient" and necessary condition 
for nonvanishing scattering is the nonvanishing of 
w. From Eq. (15), one sees that unless Kb -) 
(n + ~)1T, w will tend to zero. In fact one finds that 
if 

Kb -) (n + !)1T - !Ig 1- 1/2 + o(g-1/2), (16) 

then tanw -> kl!. The statement in Eq. (16) is a 
statement about how rapidly 1) approaches (n + ~)1T • 
In order to understand this situation, it should be 
noted that! is merely the logarithmic derivative 
at r == b, the edge of the square well. This follows 
from Eqs. (14) and (15) and the expression for the 
logarithmic derivative 

log der == k cot(kb + 0) == k cotw 

=K cotKb ->!Klgl-1I2 ->f. (17) 

As is well-known,6 a resonance takes place when 
the logarithmic derivative at the "potential boun­
dary" vanishes and the penetration of the potential 
region will be depressed as this quantity increases 
in magnitude. Thus scattering windows are pre­
sent in the limit, only when Eq. (16) holds for finite 
values off, with a resonance at! = O. 

The reason that the role of arbiter of scattering 
has changed from the parameter ~ to the para­
meter 1) is the vanishing boundary condition at 
r = O. This "clamps" the wavefunction at r = 0 
~nd a stronger spike than a 0 function at the origin 
is necessary to produce scattering. One readily 
verifies that a 6-function potential located at the 
origin produces no scattering (unlike a 0 function 
located elsewhere), while the more singular poten­
tial 6(r)/r gives resonance scattering (corres­
ponding to f = 0). What actually happens is that 
the singularity selects the irregular solution 
which does not vanish at r = 0, but whose deriva­
tive vanishes at r = 0 corresponding to a vanish­
ing logarithmic derivative. Thus infinite ~ causes 
the wave function to emerge from the "interaction 
region" with infinite slope, and therefore with 
infinite logarithmic derivative. The effect of a 
singularity corresponding to a finite value of 1) is 
to bend the function in the interaction region further 
and to make penetration from the outside region 
possible only when the slope at the boundary is 
zero. Zero logarithmic derivative is characteristic 
of the irregular solution, as well as threshold bind­
ing. Such a pitfall was indeed encountered by 
Caloger02 in a case where a (singular) repulsive 
potential was approached by a sequence of poten­
tials, which contained a deep attractive pocket 
which converged to an attractive spike at r = O. 

For k = 0, a = 0, one obtains the correct scattering 
length directly from Eq. (14) and one finds 

A = g-1/2 (tan1'/ - 17). (18) 

In complete analogy with the k ;.! 0 case, one finds 
a nonvanishing scattering length if 

17 ~ (n + ~)rr - !lg\-1/2 + o(g-1/2), (19) 

which results in A = II!. The interpretation is the 
same as before. 

In the repulsive case where k ;.! 0, a = 0, one finds 

tano = k/y tanhyb - tankb (20) 
1 + kly tankb tanhyb ' 

where y = (g - k2)l/2 which in the limit b -) 0, 
g~OO gives no scattering under any circumstances. 
This is readily understood in the light of earlier 
considerations. A repulsive potential makes the 
wave function show a convex face toward the u axis 
[u(r) = r~(r)] and one never approaches the pene­
tration conditionf < 00. If k = 0, one can go to the 
limit directly in Eq. (20) and find that the scatter­
ing length vanishes unconditionally. 

If a = 0 the criterion for binding at zero energy 
reads 
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TABLE m. Limiting values for the case b ---+ co, g ---+ O. 

Case (ii) 

k "0 
AU.or rep. 

k=O 
AU.or rep. 

Bound state 
threshold 

Limiting value 

tanli = tan(I;!2k) 

1/ - (n + !)1T - a 1 g 11/2 

gl/2 cot1/ = 0, 

&!fficient condition 
for no effect 

~ = 0 

(21) 

which implies 1/ -) (n + ~)1T + O(g-1/2) which is 
essentially the same as Eq. (19). 

To summarize, we found that the important dis­
tinction for case (i) is whether a does .or does not 
vanish. If a '" 0, a criterion for (nontrivial) 
scattering, is the nonvanishing of ~, while for 
a = 0 scattering was possible only in .. small 
neighborhoods" of a set of discrete values of 1/. 

The existence of a bound state was possible if 
a '" 0 only for one finite value of ~, but for an 
infinite number of discrete values of 1/, while for 
a = ° only the latter type criterion in 1/ was re­
quired for bound states. It was mentioned earlier 
that the limit ~ -) 00 corresponded effectively to an 
infinite barrier at r = a, at which the wave function 
takes on the value zero. In the case a = 0, we saw 
that a suffiCiently strong singularity at the origin 
produced the irregular solution corresponding to 
vanishing slope. In the same way the effectively 
infinite barrier at r = a, may, if a sufficiently 
singular potential is present, Le., 71 "'0, allow solu­
tions with vanishing slope, which is the condition 
for a zero energy bound state. 

The result that ~ -) ° is a sufficient condition for 
no scattering would be expected to generalize to 
the corresponding quantity in Eq. (7). Generaliza­
tions broad enough to include the results for the 
a = ° case might have the forms 

10
00 

dr 1 : J3r 1 Vn (r) 1 -) 0 

«(3, some positive constant) or 

(' dr rIVn(r)l-) 0. 

(22a) 

(22b) 

We shall see in the following paper that these are 
indeed sufficient conditions for the vanishing of 
the phase shift. 

Case (ii),b -) oo,g -) ° 
In this case it is clear that ~ ~ 0 implies 1/ -) 0, 
which implies ~ -) 0, and that ~ < 00 implies 1/ = 00, 

while 1/ < 00 implies ~ = 00. The results for the 
present case are summarized in Table III. 

One finds in the present case that there is no dis­
tinction between a '" 0 and a = 0. This is as one 
might expect since the range is asymptotically 
large and boundary effects at r = 0 are washed 
out. One finds for k '" 0 that the phase shift is 

given from 

tano = tan(~/2k), (23) 

a result valid for both the attractive and repulsive 
cases, for which, of course, ~ will differ in sign. 
For large k, this result is in agreement with the 
Born approximation. No limit is approached in 
the low frequency case. This is not difficult to 
understand in view of the approach to infinity of 
three distinct lengths b,g-1/2, and A = 11k whose 
commensurability determines the phase shift. 
One finds no limit approached as well in the case 
~ -) 00. Either of the generalizations of ~ 
expressed in Eqs. (7) or (22a) are divergent for 
the Coulomb-like tail for which one indeed knows 
that the phase shift as conventionally defined does 
not exist. 

In the k = ° case, one finds the result 

A=-~P 

valid for both the attractive and repulsive cases 
(where the sign of ~ is different) and for a '" ° as 
well as a = 0. The natural generalization of P as 
a criterion would correspond to the integral 

J.oo dr r 2 V(r) whose finiteness we know is a con-
M 

dition for a finite scattering length. The range 
o < ~ < 00 which corresponds to a finite scattering 
length corresponds to ~ = 0. Thus while no 
scattering is present in ~ ~ 0 limit at nonzero 
energies, one generally finds a nonvanishing 
scattering length. The difference results from 
the damping in the finite wavelength case which is 
absent when A -) 00. We easily see that ~ -) 00, 

which gives an infinite scattering length, does not 
correspond to the ~resence of a bound state at 
zero energy as in case (i). Rather, the infinite A 
derives from the infinite range of the interaction 
b -) <Xl. The scattering length among other things 
is a measure of the range of the interaction. 

The criterion for binding a bound state at zero 
energy is again expressed in terms of 71. For 
a '" 0 the condition for binding is again expressed 
by Eq. (11) which requires that 

71 -) (n + ~)1T - a Ig 11/2 + o(g1/2). (25) 

In view of a + b = c, this can be written as 

c Igl/21 -) (n + i)1r + o(g1/2). (25') 

For a = ° the condition is again expressed by Eq. 
(21), and the resulting condition is 

1/ = b Ig 11/2 ~ (n + ~)1T + o(g1/2). (26) 

Since b = c when a = 0', this condition coincides in 
form with Eq. (25'). The a = 0 and a '" ° cases 
also resemble each other in that the binding 
corresponds to the same asymptotic values of 1/, 
which was not true for case (i). 
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We conclude in this case that ~n --7 0 is a sufficient 
condition for no scattering, a result which would 
be expected to generalize to the conditions 
jdr!Vn(r)!--700r jdrr!Vn(r)!/(l +i3r)--70. 
Similarly 1] --7 0 which implies no bound states, 
corresponds either to j dr! Vn(r)!1/2 --70 or 
j dr r! Vn (r)! --7 O. The latter condition emerges 
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The continuity of the phase shift and scattering length as a functional of the potential is considered. 
We find that the convergence of J dr Iv. I to zero is a sufficient though not necessary condition for the 
vanishing of the phase shift, while the convergence of Jdr rll'. (r) I or .r dr Iv. (r) 1112 to zero would be 
a sharp condition. A number of theorems of this type are proven. Theorems are also proven demon­
strating the continuity of the phase shift and scattering length as a sequence of potentials converging 
in the proper norms to a nonzero potentiaL! Some implications of the existence of a Banach space of 
potentials are discussed briefly. 

I. INTRODUCTION 

In Paper I of this series 1 the phase shift and other 
" scattering functions" of potential theory eon­
sidered as functionals of the potential were shown to 
have absolute bounds related to certain integral 
norms of the potential. Paper II studied in detail 
the question of when the convergence of a potential 
to zero implies the convergence of the correspond­
ing phase shifts to zero for the case of square 
well potentials. It was found that such convergence 
applies when convergence of certain integral norms 
for sequences of these potentials holds. In this 
paper, these results are found to apply quite gener­
ally to nonsingular potentials. The behavior of the 
phase shifts and wavefunctions corresponding to a 
sequence of potentials which converge to a nonzero 
potential is also dealt with in this article. Certain 
aspects of continuity of the phase shift for cases 
of singular potentials are discussed in an appendix. 

n. CONTINUITY IN THE NEIGHBORHOOD OF 
V(r) = 0 

We consider potentials V(r) which belong to the 
class L 1 in [ 0, 00 ),1 i. e., potentials which satisfy 
~ '= foo drl V(r) 1< 00 .2The phase shift 1l(k) at an 
eneriY k2(1£ 212m = 1) is a functional of V(r). 

Given a sequence of potentials {Vn (r)} which ap­
proach zero pointwise; under what circumstances 
does it follow that the sequence of phase shifts 

On (k) vanishes for each value of k? Under what 
circumstances does tin (k) -) 0 for each k imply that 
Vn (r) --7 0 pointwise, or uniformly, or in some other 
norm? (Our phase shifts are normalized by the 
convention that they are continuous for real k and 
that ° (k) ~ 0 as k --7 00.) The methods of the 
present section lean on the results of the first of 
these papers which we shall refer to as I, and we 
shall refer to equations in I by attaching I to the 
equation number. 

We prove the following theorem which generalizes 
the result of Paper II that ~ -) 0 implies no scat­
tering. 

Theorem 1: Let {Vn (r)} be a sequence of po­
tentials such that 

Then lin(k) ~ 0 for all k ;>t 0, uniformly for all k 
in any open interval of the positive k axis which 
excludes a neighborhood of k = O. 

(1) 

Proof: The result follows immediately from 
the inequalities (I 9) by setting L = O. In Appendix 
A of I it was shown that the same inequality is 
valid for all partial waves. We see from Eq. (I. 9) 
that the convergence is uniform in any interval of 
the k axis excluding a neighborhood of k = O. That 
k = 0 can be a bona fide exceptional point is seen 
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We conclude in this case that ~n --7 0 is a sufficient 
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I. INTRODUCTION 

In Paper I of this series 1 the phase shift and other 
" scattering functions" of potential theory eon­
sidered as functionals of the potential were shown to 
have absolute bounds related to certain integral 
norms of the potential. Paper II studied in detail 
the question of when the convergence of a potential 
to zero implies the convergence of the correspond­
ing phase shifts to zero for the case of square 
well potentials. It was found that such convergence 
applies when convergence of certain integral norms 
for sequences of these potentials holds. In this 
paper, these results are found to apply quite gener­
ally to nonsingular potentials. The behavior of the 
phase shifts and wavefunctions corresponding to a 
sequence of potentials which converge to a nonzero 
potential is also dealt with in this article. Certain 
aspects of continuity of the phase shift for cases 
of singular potentials are discussed in an appendix. 

n. CONTINUITY IN THE NEIGHBORHOOD OF 
V(r) = 0 

We consider potentials V(r) which belong to the 
class L 1 in [ 0, 00 ),1 i. e., potentials which satisfy 
~ '= foo drl V(r) 1< 00 .2The phase shift 1l(k) at an 
eneriY k2(1£ 212m = 1) is a functional of V(r). 

Given a sequence of potentials {Vn (r)} which ap­
proach zero pointwise; under what circumstances 
does it follow that the sequence of phase shifts 

On (k) vanishes for each value of k? Under what 
circumstances does tin (k) -) 0 for each k imply that 
Vn (r) --7 0 pointwise, or uniformly, or in some other 
norm? (Our phase shifts are normalized by the 
convention that they are continuous for real k and 
that ° (k) ~ 0 as k --7 00.) The methods of the 
present section lean on the results of the first of 
these papers which we shall refer to as I, and we 
shall refer to equations in I by attaching I to the 
equation number. 

We prove the following theorem which generalizes 
the result of Paper II that ~ -) 0 implies no scat­
tering. 

Theorem 1: Let {Vn (r)} be a sequence of po­
tentials such that 

Then lin(k) ~ 0 for all k ;>t 0, uniformly for all k 
in any open interval of the positive k axis which 
excludes a neighborhood of k = O. 

(1) 

Proof: The result follows immediately from 
the inequalities (I 9) by setting L = O. In Appendix 
A of I it was shown that the same inequality is 
valid for all partial waves. We see from Eq. (I. 9) 
that the convergence is uniform in any interval of 
the k axis excluding a neighborhood of k = O. That 
k = 0 can be a bona fide exceptional point is seen 
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by considering the sequence 

with 1 < ex < 2 and gn -} O. It can be shown that 
all the potentials of the sequence have an infinite 
number of bound states and hence, certainly, a 
nonvanishing phase shift at k = O. The lack of 
uniformity is, however, not necessarily connected 
with the presence of boundary states. The expres­
sion for tanc5 in (IT 23) for a sequence of repulsive 
potentials manifests an obvious non uniformity in 
k near k = O. We shall term ~ == f drl V(r) I the 
L 1 norm of V(r). 

The next theorem valid for all partial waves will 
be explicitly demonstrated only for S waves. The 
proof for other waves is easily constructed. 

Theorem 2: (Vn (r)} be a sequence of potentials 
such that 

00 rIVn(r)1 
wll,n == wn == fo dr 1 + {3r -} 0, (2) 

where the wn are uniformly bounded. Then 
c5 n (k) -} 0 for all k ~ 0 uniformly in any open 
interval of the k axis, which excludes a neighbor­
hood of k = O. The sequence of wavefun<;tions 
converges uniformly pointwise to the free. solution. 

N.B. ~n -} 0 implies that wn ~ O. 

Proof: The inequality Eq. (I lOa) sets a 
vanishing lower bound on the phase shifts. Let 
M be a uniform bound to wn ' We proceed from3 

sinc5 = - (11k) f; dr sinkrV(r)ii(r), (3) 

where ii(r) is the radial wavefunction normalized 
to have the asymptotic behavior rt(r) ~ sin(kr + 15) 
which obeys the integral equation4 

u(r) = sinkr + (11k) fr dr' sink(r - r')V(r')u(r'). 
o (4) 

Iteration and the inequalities 

sinkr 2r <: 2{3r 
-k-:S 1 + kr - k(1 + (3r) (5) 

yields for k ~ 0 to 

lii(r) - sinkrl:o exp (¥-Wll[V]~) -1:sC-l<oo 
(6) 

in the notation of I (see Sec. IT), where C == 
exp(2fjMlk). Alternately, we may derive that 

I ii(r) - sinkrl:o exp2wk[V]~ -1. (7) 

Equation (6) implies the uniform convergence of 
ii(r) to the free solution when "t --+ 0 if k ~ O. 
Equation (3) together with Eq. (6) imply that 

I . "I <: 2{3C roo d r IV(r) I <: 2{3M exp (2{3M\ (8) 
sm" - k Jo r 1 + fjr - k k J 

from which the theorem follows. By employing 
the inequality (sinX) :s 1, we prove Theorem 1 

again. The present theorem allows stronger singu-
1arities in the potential than Theorem 1 does as 
for the case of a Yukawa potential. These two 
theorems include as special cases all the condi­
tions suggested in II for the vanishing of the phase 
shift. The lack of uniformity in the neighborhood 
of k = 0 is to be noted again. 

The following theorem provides for uniform con­
vergence in k. 

Theorem 3: Let {Vn(r)} be a sequence of po­
tentials such that 

Xn == f drr Iv;, (r) I -} 0, 

then c5 n (k) -} 0 uniformly for all real k. 

(9) 

N.B. Xn -) 0 implies that we,n -) O. The present 
proof applies only to S waves. We denote by L(1) 

the class of potentials satisfying f drr I V{ r) I < o(). 

Proof: The result is an immediate consequence 
of Eqs.[I (lOb)] and [I (19)]. The convergence ofthe 
wavefunction for k ~ 0 is a consequence of Theorem 
2 since )(n -) 0 implies "t -} O. A glance at Eq. (7) 
shows the same to be true at k = O. The uniformity 
is related to the absence of bound states. 5 

We shall present another proof of this theorem by 
a method which will anticipate the arguments of the 
next section. The method employs the analytical 
properties of the Jost function in k, the "energy" 
variable. We imagine a common coupling constant 
coefficient g attached to all the v,. (r). We eventu-
3;lly set g = 1. For nottoo pathological potentials,6 
a necessary and sufficient condition for the exist­
ence of the Jost function is the finiteness of the 
L(1) norm. A number of properties of the Jostfunc­
tion will be utilized. One is its analytic character 
in the entire g plane7 and in the half-k plane (Imk 
:s Il? 0 for some 11)8 if the potentials satisfy X == 
f drr IV(r) 1< o(). 

Another is the expression of f(k;g) (the g depend­
ence will frequently be suppressed in the notation) 
as a power series expansion 9 

0() n 0() rWI 

f{k'g) = " ~ r dr'" j dr , Ho kn Jo IOn 

X V(r 1)'" V(rn)e -ikr1 sink{1i - r 2 )'" 

(10) 

and the third is the set of dispersion relations1o 

P r/ k" nB E - E ( 
In If(k) I = - - Joo dk' ~ + ~ In ~ 11) 

11 - 00 k' - k j= 1 E 

n 

c5(k)=!:jOOdk' Inlf(k')1 +2t cot-d}{'j, (12) 
11 -00 k' - k j=l \KjJ 

where E.(j = 1, ... ,n
f

) is in the set of bound state 
energies' and Ej = - K j • The condition J drrl V(r) I 
< 0() need not require the convergence of the dis­
persion integrals; however, the once subtracted 
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dispersion relations (which we write now without 
bound state terms) are necessarily convergent. 
This follows from the uniform boundedness of the 
6(k) when the L (1) norm is bounded, as established 
in the boundedness lemma of I. 

The once substracted dispersion relations read 

In IA~i 1= -: P J dk' k'T~~k:l k)' (13) 

6(k) - ~ p r dk' In I I(k, I 
- 1T' k'(k' - k) , (14) 

where we have dropped the bound state terms, . 
since Xn -) 0 implies that eventually there are no 
bound states.5 The coefficients 1>m (k) of gm in Eq. 
(10) satisfy the inequality 

m 

l<I>m(k)I::;~! [J;drrIV(r)l] (15) 

The convergence of the power series or In (k) 11 is 
uniform in nand k for k real. If )en -) 0, then 
lin (k) I -) 1 and In Itn (k) I -) 0 so that the right side 
of the dispersion relation Eq. (14), gives zero which 
implies that 6n (k) -) 0 uniformly in k. 

We can infer similar results for potentials of the 
L (l/2) class (see Sec. II of I). 

Theorem 4: Let V (r) be a sequence of L(1/2) 

potentials, whose L (1I~) norms Tn approach zero 
with n, then 6,,(k) -) 0 uniformly with k. This re­
sult is valid for all partial waves. 

Proal: The coefficients of the Jost function for 
L(1/2) potentials (which always exists) can be 
bounded by12 

(16) 

T" -+ 0 implies I" (k; g) -) 1 and the argument pro­
ceeds as in Theorem 3. 

The above theorems have supplied only sufficient 
conditions on the potential sequence. Necessary 
conditions have been found only for sequences of 
repulsive potentials, and are given in the following 
theorems. The writer believes that the same re­
sults are perhaps valid for sequences of attractive 
or mixed potentials, provided one has conditions on 
the absence of bound states. The following result 
is valid for all partial waves. 

Theorem 5: Let {(I,. (k)} be a sequence of phase 
shift functions (of k) each corresponding to an L (1) 

potential, each of which for sufficiently large n is 
everywhere nonnegative, and suppose there exists 
a II > 0 such that for all n 

lim e"r V,,(r) -) O. 
r .... ao (17) 

If li. (k) -) 0 for each k ,the sequence of L(1) norms 
)e. approaches zero. 

Remark: It is not clear whether condition (17) 
reflects a limitation of mathematical technique or 
a true physical condition. 

Proal: The lemma on the uniform boundedness 
of lli(k) I implies from Eq. (13) that, if lin(k) -) 0, 
then 

(18) 

By hypothesis lin (k) -) lin (0) = O. Hence the quan­
tity 1,,(k)/ln(O) -) 1 for all real k. For purely re­
pulsive potentials In (0) 2: 1. If lim e VY Vn (r) -) 0 
as r -) ex> for some 1/ > 0, then the inequality 13 

It(k) - 11 =:: C J; ~r:lnl~1 exp[2IJ(k)Imkr] (19) 

(C some constant) showsl,,(k)/fn(O) to be uniform­
ly bounded in k and n in the half-k plane Imk < 11/. 
One concludes from Vitali' s convergence theorem 14 
that lim In (k)/In (0) as n -) ex> is an analytic func­
tion of k in the aforementioned open half-plane 
and must therefore be identically 1. From Eq. 
(19),j(k) approaches one as I kl -) ex> within the 
interior of this analyticity domain. Consequently, 

lim In(k) == 1 
n .... oo 

(20) 

for all k. For purely repulsive potentials all the 
terms in the power series expansion [Eq. (10)] 
for 1(0) are positive, and In (0) -+ 1 implies that 

lim J drr TTn (r) -) 0, 
"-+00 

since this quantity is the coefficient of g in the 
expansion of the Jost function at k = O. 

(21) 

A variety of alternative conditions are possible. 
In place of Eq. (17), a condition that the potentials 
be analytic 15 in r in an appropriate sector would 
suffice to make the real k-axis (excluding possibly 
k = 0) interior to a domain in which I,,(k)/I,,(O) is 
uniformly bounded, which would lead to the same 
result. 

All the sufficient conditions of Paper IT regarding 
square wells have been proven in the present 
section. In the following section we discuss con­
tinuity properties in the neighborhood of an arbi­
trary potential 

m. CONTINUITY IN THE NEIGHBORHOOD OF 
ANY V(r) 

In the present section, we shall prove some results 
concerning the convergence of a sequence of phase 
shifts when the corresponding sequence of poten­
tials {Vn(r)} converges to a potential V(r), which 
is also L1. These include the results of the previ­
ous section as special cases, though we can prove 
less in the general case. An alternative type of 
problem, which we shall deal with inCidentally but 
not systematically, concerns the convergence of 
the phase shifts when the sequence of potentials 
constitutes a Cauchy sequence in some norm. The 
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existence of an appropriate limiting potential 
entails a space of potential functions which is com­
plete. We do not propose to discuss this matter 
in this paper. 

We prove the analog of Theorem 1. It is valid for 
all partial waves. 

Theorem 6: Let {V .. (r)} be a sequence of poten­
tials which constitutes a Cauchy sequence in the 
Ll norm; i.e., for given f, when m, n are greater 
than an appropriate N (f), 

(22) 

We also presume J dr IV .. (r) 1< M < OCJ for all n. 
Then 6 (k) ~ o(k) for all k '" 0 uniformly in any 
open interval of the k axis which excludes k = O. 
The radial wavefunctions also converge pointwise 
and uniformly. 

Proof: We follow the method used in proving 
Theorem 2. One derives from Eq. (3) and from 
the reasoning which proved Theorem 2 that 

sinl) m(k) - sinq .. (k) 

= - (11k) J; dr sinkr ·[V m (r) - V .. (r)]iim (r) 

+ (11k) Jooo dr sinkr· ~ (r)[u .. (r) - fim(r)], 

which implies the inequality 

1 sin6m(k) - sinli .. (k) 1 ~ (elk) J 0
00 

dr Iv m(r) - v,. (r) 1 

+ (1/k)J; drIV .. (r)llu .. (r)-iim(r)l, (23) 

where C == exp(Mlk). From the equation for the 
radial wavefunction,4 one readily derives the in­
equality 

1 Urn (r) - u .. (r) I ~ W m .. 

+ (11k) J; dr' IV .. (r') 1 Iu m(r') - u .. (r') I, (24) 

where 

Wm .. == (Clk)fo
oo 

dr' IVm(r') - V .. (r')I. (25) 

We also derive easily that iteration of the inequa­
lity, Eq. (24), leads to 

lii",(r) - u .. (r) I 
~ W""" exp(l/kU;dr' IVn(r') 1 ~ CW mn' (26) 

and find easily that the sequence sin6 .. (k) (n = 1, 
2, .•. ) for k '" 0 is a Cauchy sequence which there­
fore converges to a limit. For physical purposes 
the convergence of sin6" is sufficient. However the 
continuity of 6 (k) together with 6" (co) = 0 implies 
that the 6 (k)aiso converge. The pointk = 0 maybe 
an exceptional point as illustrated by the example of 
a sequence {v,.(r)} of the form v,.(r)==g" V{r), where 
the sequence {g ,,} may converge to a value g such 
that gV(r) has a different number of bound states 

than all the Y,,(r). The pointwise and uniform (in r) 
convergence of the radial wavefunction u{r) is a 
direct consequence of Eq. (26). 

The next theorem is an analog of Theorem 2. It 
can be proven by the method employed in the 
proof of Theorem 2 modified along the lines in 
which the proof of Theorem 6 modified the proof 
of Theorem 1. 

Theorem 7: Let {V .. (r)} be a sequence of poten­
tials such that 

[

00 rlV m (r) - V,,{r) 1 

. 0 dr 1 + Br < f (27) 

for m, n larger than some N{ f). Then the sequence 
{li .. (k)} converges for any k ;zO 0 to a function 6(k) 
continuous in any open interval of the k axis which 
excludes k = O. The radial wavefunction converges 
pointwise and uniformly. 

The following theorem is the analog of Theorem 3. 

Theorem 8: Let {V .. (r)} be a sequence of poten­
tials of uniformly bounded L(l) norm which con­
verges to an Ll potential V(r) with finite L(l) 

norm, in the. sense that 

lim J,<X:l drrl V (r) - V(r) 1 = O. 
n-+oo 0 n 

(28) 

Then the corresponding sequence of phase shifts 
{6 .. (k)} converges pointwise for k ;zO 0 to 6(k), the 
phase shift function for V(r). If also 1(0) ;zO 0, 
where j(k) is the Jost function of V(r), then the 
corresponding sequence of phase shifts {{)" (k)} con­
verges pointwise uniformly to 6(k), the phase shift 
function for V(r). The corresponding wavefunc­
tions also convex ge pointwise and uniformly in r. 

N. B. The condition 1(0) ;zO 0 implies that V(r) 
does not have a new bound state appearing at zero 
energy. Note further that this theorem requires 
not merely the existence of a Cauchy sequence in 
the L(1) norm, but the existence of a limiting po­
tential in this norm. 

Proof: Let X be the common upper bound to 
the L(l) norms of V(r) and the potentials lj(r)(j -
1,2, .•. ). Then the Jost function fj (k) of each lj(r) 
exists as an entire function of g (a common coupl­
ing constant factor attached to all the potentials). 

We show that the convergence of the L(l) norms 
X implies uniform convergence of the Jost func­
ti~ns f. (k) to f{k). In fact the existence of a limit­
ing fmiction could be inferred if only a Cauchy 
sequence in the L(l) norm were assumed, but it 
need not have the properties of a Jost function. 
For the sake of greater generality, we shall de­
monstrate the convergence of the Jost solutions 
f. (k, r) to the Jost solution f(k, r). We introduce 
the notations 

1~[X, y; V]m 

== e-ik(X-Y)J b dr JTIdr ••• JTm-1dr V(r ) ... 
k m + 1 a 1 a 2 amI 
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V(rm ) sink(x - rl) sink(rl - r2)'" 

x sink(rm_l - r,,) sink(rm - y), (29a) 

The uniform convergence of the wavefunction is a 
consequence of the uniform convergence of the 
Jost solutions f(k, r) and f( - k, r), for real k and 
the fact that f(k) ~ O. 

Ib(V' V] a ~, m 
1 J b J r (r 

= k m a dri a 1dr2'" Ja m-Idr m V(rl)'" We can conclude from the uniform bounds 
x V(rm)e-ik(Y\-Y) sink(r i - r2)'" 

x sink(rm_1 - r,,) sink(rm - y). 

The coefficient ¢n (k, r) of g" in the series for 
f(k, r) corresponding to a potential V(r) is 

We find for two potentials VI(r) and V2(r) 

¢(~)(k,r) - ¢(~)(k,r) = I~[O; vd" - I~TO; V2]" 
n 

(29b) 

(30) 

= 6 r'" drs [V1(rs ) - V2(rs)]I;' [rs'VI ] s-1 
s = 1 Y s 

xl~s[rs,0;V2]"_s' (31) 

where an empty factor is interpreted as unity. In 
the present case the following inequalities are 
valid; 

IHy; V]m::; (l/m!)(J~>drrIV(r)l]m (328) 

IZ[x,y; V]m::; (x/m!)[J: drrIV(r) It, (32b) 

which result in 

I¢n(l) (k, r) - ¢~2)(k,r) I 

(2X),,-1 00 

::; (n _ 1)! fo drr IVI (r) - V2(r) I. (33) 

where X is the universal L(1) bound to the Y<")(r) 
and V(r). Consequently, 

1/,(k, r) - Ij (k, r) I 
::; I g I exp(21 g I X) fo 00 drr IV; (r) - v;(r) I, (34) 

which shows the sequence Lt; (k, r)} to be a Cauchy 
sequence. We can conclude from this, the uniform 
pointwise convergence of the Jost solutions to 
I(k, r) as well as of the Jost function to I(k). The 
phase shift o(k) = 1m lnf(k) likewise converges 
iff(k) ;c O. We have assumed thatthe {V" (r)} actu­
ally converge in the norm to an L(1) potential V(r), 
so that we could conclude that I(k) is itself a Jost 
function .and therefore16 f(k) ~ O. If furthermore 
1(0) ~ 0, then the convergence is uniform for all k. 

(35) 

that the limiting Jost function I(k) exists as an 
analytic function of g. It is not necessarily an an­
alytic function of k for k real since the real axis 
may only be the boundary of the analyticity domain 
in k. (The above conditions have sufficed to imply 
analyticity in the lower half- k plane.) The disper­
sion relations, Eqs. (11)-(14), are valid for the 
boundary values of an analytic function. 

It is not possible to obtain results to the effect that 
the covergence of phase shifts and bound state 
energies entails convergence of potentials in some 
norm. This follows from the results of Ge1fand­
Levitan theory17 which imply that a knowledge of 
the residues of the Jost function at the bound state 
poles is necessary in addition to their location and 
the phase shifts at all energies in order to recon­
struct the potential. 

We conclude with a result on convergence of the 
1 = 0 scattering lengths. 

Theorem 9: Let {Vn(r)} be a sequenceofpoten­
tials for which the £(1) norms and 

(36) 

are uniformly bounded. Suppose moreover that the 
{V" 1 constitute a Cauchy sequence in the first 
(L(1» and second moment norms, i.e., for p = 1 
and 2 and arbitrary f > 0, 

(37) 

can be satisfied for all 111, n sufficiently large, and 
that the corresponding Jost functions 1,,(0) do not 
converge to zero. Then the sequence of scattering 
lengths A" is a convergent one. 

Proof: We imagine a common coupling constant 
parameter g attached to each of the potentials 
V m (r). We may eventually set g = 1. We proceed 
from the expression for the S-wave scattering 
length18 

~g" 1000 

drn••• f~ dr1r1(r1 - r2)'" (rn-1 - rn)r" V(r l )'" V(r,,) 
-A(g) = .:::11_=1=--____________________ = !flGl (38) 

~gnfoo dr ••• (00 drl(rl - r2)'" (r,,-I - r ,)r" V(r l )'" V(r,,) - D(g) • 
11=0 0 " JT2 

D(g) is merely the zero-energy Jost function 1(0) 
considered as a function of g. N(g) and D(g) are 

t 

each entire functions of g if VCr) has either bound­
ed L(l) or L(I/2) norm. We write 
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co co 

N(g) = ~. g"N", D(g) == ~ griD,.. 
,. ~l ,. ~O 

The coefficient D,. is identical to ¢,.(O, 0) of Eq. 
(30). The inequality, Eq. (33), for ID(l) - D(2) I ,. ,. 
follows as for Theorem 8, and this implies the con­
vergence of the Dm(g) for eachg. From a comple­
tely parallel argument utilizing the conditions of 
the present theorem, one finds sim ilar ly for the N" 

,,-2 

IN(l) - N(2) I :S. (2xl [yJ.co drrlV1 - v2 1 
,. ,. (1/ - 2)! 0 

(39) 

where X and 'Yare, respectively, uniform bounds of 
the first and second moments. One finds that 

INi (g) - Nj (g) l:s g2ye 2gx J; drrl Vi - lj I 
+ geKX foCO drr2 1Vi - Vj I , (40) 

which implies the convergence of the Nm(g) for 
each g. If the Dm (g), i.e., the f m(O), do not approach 
zero, then the Am(g) clearly approach a limit. The 
limiting functions N(g) and D(g) are analytic for all 
finite g so that A (g) is meromorphic in g. We 
readily verify for V(r) 2- 0 that 

N,. == Jocodrn"'~: dr 1r 1(rl - r2)" 'r~ V(rl)'" V(r,.) 

:s .r; dr 1r rV(r 1lf; drn:" 

xJco dr (r - r )'''r V(r ) ... VCr )=yD 2 2 3 n 2 n n- V 
"3 

which immediately implies the useful inequality 

A(g) :s gy. (41) 

This shows in particular that a bounded L(1) norm 
and the convergence of the yft to zero imply a 
vanishing scattering length. 

IV. DISCUSSION 

An immediate application of the above results is 
to the clarification of limiting procedures in poten­
tial theory 18a some of which have led to par­
adoxical results or to specious reasoning. The 
emphasis would not be misplaced in calling the 
attention of physicists to the pitfalls in what seems 
a most plausible type of limiting procedure. Such 
caution is especially in order in elementary parti­
cle formalisms where regularizations and limiting 
procedures abound, though the present type of an­
alysis is likely to prove not so feasible in these 
cases. 

It seems difficult to offer any direct physical 
understanding of the conclusion that the norms 
1.00 

drr IV(r) I and J.co dr IV(r) 11/2 are appropriate 
toOthe correct formRtion of limiting procedures 
beyond the observation that they are both dimen­
sionless quantities (in the units 1£2 /2m = 1) and 
therefore appropriate to measure the number of 
bound states. It should be noted that an infinite 

set of dimensionless quantities is available of the 
form 

(42) 

which, apart from q = t, q = 1, do not seem to play 
a special role. The inequality 

!21 :s !2q(!21/2)2(q-l) 

derivable from the Holder inequality19 indicates 
the lack of independence of these norms. Since 
the role of the L(1/2) norm 1.00 

dr IV(r) 11/2 seems 
to have been recently discove<i-ed, 12,19a this 
paper has made a special effort to sponsor the role 
of this type of norm for which the demonstrated 
results have been generally weaker than for the 
more familiar L(1) norm. Time will show whether 
better results may not hold. 

From the over -all point of view, the results of this 
article point to the concept of potentials as ele­
ments of a Banach space, with the phase shift as a 
continuous and bounded functional of the potential 
almost everywhere (with continuity failing to hold 
in the neighborhood of a potential which has a new 
bound state emerging at zero energy). 

The condition of completeness requisite for a 
Banach space has not been discussed in this paper. 
One knows that20 all metric space can be com­
pleted in unique fashion. Alternative topologies to 
norm topologies are also pOSSible, such as weak 
topologies which would allow a wider space of 
potentials including in particular, () functions. With­
in the framework of a Banach space, a variety of 
new questions and concepts can be dealt with: 
Bases for the space, everywhere dense subsets, 
compactness,etc. A possible prOjection of the use­
fulness of the new abstract structure may lie in 
the device of proving general properties by proving 
them for the elements of an everywhere dense set. 
Certain additive inequalities of the phase shift 
functional have been proven and will be presented 
in a subsequent paper. 

It is clear that all that has been said of the phase 
shift as a continuous bounded functional applies 
equally well to In It(k) I. This suggests generaliza­
tion in the direction of determining other or more 
general continuous bounded functionals in the poten­
tial space. 

In conclUSion, one might enumerate the directions 
into which the present work may be extended. One 
might consider the continuity question for classical 
scattering, for one-dimensional potential problems, 
for non local and energy-dependent potentials, as 
well as for the total cross section in three dimen­
sions. 
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APPENDIX A: THE DISPLACEMENT LEMMA 

A fundamental result upon which we base subsequ­
ent proofs of the continuity of scattering functions 
in cases of singular potentials is the following 
lemma. This lemma allows us to apply the ideas 
of the present paper to a sequence of potentials 
considered in the displaced interval (a, 00) (a > 0). 

Displacement Lemma: Let {Vn (r)} be a sequ­
ence of potentials of uniformly bounded L(~) norm 
in the interval (a, 00) (a> 0) and let them form a 
Cauchy sequence in the L<P norm over this inter­
val. Suppose the sequence {lin (a, k)} of values of 
the respective variable phase functions at r = a 
for energy k 2 (", 0) converges to a finite limit Ii 
(a, k) which satisfies o(a, k) > - ka. Then the sequ­
ence of phase shifts {on(k)}, as well as the sequ­
ence of radial wavefunctions, converges. If the 
sequence {v,. (r)} converges pointwise to a poten­
tial VCr) which is of bounded L(~) norm in (a,oo), 
then the limiting values correspond to this poten­
tial. 

N.B. The value of a may be chosen to depend on 
k provided a > 0 for each k > O. 

Proof: We start by integrating from a to r 
(r> a) the variable phase equation for a potential 
Vn (r) of the sequence (we work with S waves for 
simplicity) 

li" (r, k) 

= o,,(a, k) - (l/k),C ds~(s) sin2[ks + ones, k)]. 
(AI) 

By hypothesis, the sequence {<'In (a, k)} conve~ges to 
a limit, say <'lea, k). We consider the quantity on (r, k) 
which solves the integral equation 

6,,(r, k) 

= <'lea, k) - (l/k)r dsVn(s) sin2[ks + 6n (s, k)]. 
<l (A2) 

Since <'lea, k) obeys the inequality -ka < l5(a, k) < 00, 
one can find a square well potential S(r) of range 
a and finite depth (depending possibly on k) such 
that its variable phase function

A 
at r = a for energy 

k2 has the value <'lea, k). Then li,,(r, k) is merely 
the variable phase at energy k 2 due to the poten­
tial 

Y. (r) '= ls(r) for r < a 
" v,,(r) for r > a. 

(A3) 

The sequence of potentials {Y" (r)} is a Cauchy 
sequence in the wI! norm and the Y,,(r) have unifor­
mly bounded we norm from the hypothesis of the 
theorem and the boundedness of S(r). We therefore 
conclude easily from Theorem 7 that the sequence 

of variable phase functions {~,,(r, k)} and corres­
vondingly the sequence of radial wavefunctions 
tU,,(r, k)} converges for any r in the interval (a, 00). 
The result follows for any k > O. It also follows 
that, if the sequence {V" (r)} in the interval (a, 00) 
con~erges pointwise to VCr) of bounded L(;) norm, 
the (') (r, k) converge to the corresponding quanti­
ties (at energy k2 ) for the limiting potential 

j S(r) 
Y(r) = 1 VCr) 

r< a 

r> a 
(A4) 

and therefore, of course, converge in the interval 
(a, 00) to the corresponding quantities for the limit­
ing potential VCr). 

We now show that 

Subtracting Eq. (A2) from Eq. (AI), we find 

<'l,,(r,k) - B,,(r,k) = 6n(a,k) - 6(a,k) 

+ (l/k) r dsV" (s) sin[2ks + <'l" (s, k) 
a 

(A5) 

+ 5n(s,k)] sin[5,,(s,k) - on(s,k)] (A6) 

which implies the inequality 

10n(r,k) - Bn(r,k)l:s I <'l,,(a,k) - o(a,k)1 

+ (l/k)f dsIVn(s)116n(s,k) - 5n(s,k)1 
a 

(A7) 

One infers by Titchmarsh's lemma21 that 

16n (r, k) - 6
n
(r,k) 

:s16n(a,k)-6(a,k)lexp[(1/k)J~dslv,.(s)l] (AB) 

From the uniform boundedness of the L (!) norms 
in the interval (a, 00) and the convergence of the 
<'ln (a, k) to o(a, k), one infers that the sequences{<'ln (r,k)} 
and{8n (r,k)} converge to the same quantity. 
The conver,.gence of the variable phase function 
sequence {<'l,,(r,k)} implies,as stated earlier,the 
convergence of the sequence of wavefunctions in 
(a,oo) for the potential sequence Yn (r) of Eq. (A3). 
This sequence of wavefunctions is identical with 
the seguence of wavefunctions corresponding to 
{Vn (r)} in (a,oo) with the correct function and slope 
at r = a. This follows because the variable phase 
function at a point determines both wavefunction 
and slope at the point. Thus the lemma is proven. 

APPENDIX B:CONVERGENCE THEOREM FOR 
A CLASS OF REPULSIVE SINGULAR POTENTIALS 

In this appendix, we extend the results of the pre­
sent article to cases where the boundedness of 
any of the norms warV), x [v), or T[V) is violated 
because of the behavior of the potential in the 
neighborhood of r = O. This situation arises for 
potential sequences which converge to a repulsive 
singular potential. We restrict the present con­
siderations to the convergence ofthe S-wave phase 
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shift and wavefunction for potential sequences 
which approach the lim iting potential monotonically 
within the fixed open interval (0, c). A more 
general theorem without the restriction of a fixed 
interval will be treated in a subsequent article. 

We now prove the following theorem which relies 
heavily on the displacement lemma presented in 
Appendix A. 

Theorem: Let {vn(r)} be a sequence of poten­
tials with the following properties: 

(a) For each r> 0, IVn(r) 1< 00 for each n. 

(b) For each r> 0, the sequence tv.. (r)} converges 
pointwise to a potential ~ (r) == VCr). 

(c) For each r> 0, IV(r) 1< 00. 

(d) The L (1) norms of the at~ractive parts are 
uniformly bounded in n; Le., Jo

oo drr I V; (r) 1< M< 00. 

(e) The norms (f3 > 0) 

r: drrl~(r)1 [ V ]00 -
wJI n c = c 1 + f3r (B1) 

are uniformly bounded in n, including n = 00, with c 
some fixed positive number. 

(f) The potentials ~(r) form a Cauchy sequence 
in the L Il (1J norm over the interval (c, (0); i.e., for 
any € > 0 one can make 

[ _ 00 = 1.00 drr IVm (r) - Vn(r) I 
we Vm v,.]c - c 1 + (3r < € 

(B2) 
by choosing m,l1 larger than some N(€). 

(g) For any fixed r < c, the sequence of numbers 
{~(r)} is nondecreasing. 

Then the limit 

o(k) = lim on (k) 
n-+oO 

existsforallrealk = O. If in (e) and (f) cne allows 
f3 = 0, then the limit also exists for k = O. 

Remark: Nothing has been said concerning the 
quantities v,. CO) and yeO) which may be finite or 
infinite (positively or negatively). 

Proof: In view of conditions (e) and (f) and the 
displacement lemma, it suffices to demonstrate 
that the "boundary values" ~ n (a, k) converge for 
each fixed k ;0< 0 with 0 < a:oS c and that lin (a, k) 
> - k(a - 'T}) for some (possible k dependent) 
value of 'T} > 0 uniformly in n. While the point r = 
c can be used as the reference point for applica­
tion of the displacement lemma, we shall more 
generally choose r = a with 0 < a ::S c. We there­
fore consider the sequence of truncated poten-

1 W. M. Frank, J. Math. Phys.12, 2348 (1971), referred to as I; 
W.M. Frank and D. W. McLaughiin,J. Math. Phys.12, 2525 
(1971) (preceeding paper), referred to as ll. Various classes 

tials {Vn(r, a)}, where 

Vn(r, a) == ~(r)e(a - r). (B3) 

0n{a, k) is clearly determined by the truncated 
potential. We denote the interval 0 ::S r ::S c by C. 
Since the v,. (r, a) are nondecreasing with n for each 
r in C , one concludes from the comparison lemma in 
I that, for each k ,the corresponding phase shift 
sequence {fin (a, k)} is monotonically nonincreasing. 
If the sequence is bounded from below, the limit 
must exist. Such a lower bound must exist, since 
the potentials can be bounded pointwise from above 
by the potential 

X(r) = max V (r;c), n n (B4) 

which is finite for all r > 0 due to conditions (a), 
(b), and (c). The phase shift lix(a, k) for X{r) 
clearly obeys ox(a, k) > -k(a - '/') for some 'T}, 

since Ii(a,k) = -ka for the hard core potential of 
radius a. We conclude from the monotonicity and 
uniform boundedness in n of lin (a, k) that a limit 
5(a, k) exists satisfying O(a, k) > -ka. The sequ­
ence {v,. (r)} is uniformly bounded in n and point­
wise convergent for each r> 0 by conditions (a), 
(b), and (c). From this one easily concludes that 
conditions (e) and (f) are valid with c replaced by 
any a> O. We now conclude from the displacement 
lemma that the sequence {on (k)} is convergent to 
the phase shift of the limiting potential in (0, (0). 

The displacement lemma also specifies the conver­
gence of the corresponding wavefunctions to those 
of the limiting potential in the interval a s r < 00. 

We can in fact conclude the convergence of the 
limiting wavefunction for any r> 0 since a is arbi­
trary. We can easily see that the limiting wave­
function vanishes at~.,. = 0, so that the limit yields 
the regular solution. We can write from Eq. (I lOb) 
that 

-ka::s lin(a,k):=: xrfoQ drrIV,;(r) I]. (B5) 

For fixed n, both bounds in Eq. (B5) shrink to zero 
as a ~ O. Since the {~(r)} are nondecreasing with 
n for each 0 < r < c, the quantity fa drr Iv,; (r) I is 
nonincreasing with n. One thereforg concludes 
that the limiting o{a, k) vanishes as a ~ O. Since 
the radial wavefunction can be uniquely construc­
ted from the variable phase function OCr, k) by 
means of the relation22 

u(r, k) = exp {{1/2k) foo dsV(s) sin2[ks + o(s, k)]} 
1" 

x [sinkr + oCr, k)], (B6) 

we conclude that u (0, k) vanishes. In Eq. (B6) the 
radial wavefunction is normalized for large r by 

u(r, k) '" sin[kr + Ii(k)]. (B7) 

of potentials, e.g., L1, LU), L<:V, LU/2) and l.U/Zl, which are 
used in the present article, are defined in I 

2 The theory for the existence of solutions of partial wave scat-



                                                                                                                                    

THE P HAS E S H 1FT. m. A SAC 0 N TIN U 0 U S FUN C T ION A L 2537 

tering equation for continuous potentials Vir) is a special 
case of the existence theorems in E. L. Ince,Ordinary Differ­
ential Equations (Dover, New York, 1944), Chap. m. See also 
E. A. Coddington and N. Levinson, Theory of Ordinary Differ­
ential Equations (McGraw-Hill, New York, 1955), Chap. 3. 
The requirements of V potentials on [0,«>] is indicated by the 
specific explicit expression for the Jost solution which exists 
for k " 0 if V(r) is [I and exists for k = 0 if V(r) is [I. 

3 See, e.g., P. Roman, Advanced Quantum Theory (Addison­
Wesley, Reading, Mass. 1965), Sec. 3-2b, Eq. (3-52). 

4 R. G. Newton, J. Math. Phys. 1, 319 (1960), Eq. (3. 7), in a differ­
ent notation with different normalization. 

5 See V. Bargmann, Proc. Natl. Acad. ScL38, 961 (1952). J. 
SchWinger, ibid. 47,122 (1961), for a bound on the number of 
bound states in a given potential, nB os x[ v]. Recall also the 
fact that the zero-energy phase shift is related to the number 
of bound states. 

6 For all potentials X < 00 implies the existence of the Jost 
function. If the Jost function exists and either one of X ± = 
J dr I V± (r) I < ex; is finite, then X is finite. Conceivably for 
potentials of the form sinrm with m > 2, the Jost function 
might exist while X = ex;. 

7 The Jost function is identical with the Fredholm determinant 
of the partial wave scattering equation. See Newton, Ref. 4. 
It is a standard result that the Fredholm determinant is 
entire in the coupling parameter; see, e.g., W. V. Lovitt, 
Linear Integral Equations (Dover, New York, 1950), Chap.III. 

S See Newton, Ref. 4, discussion following Eq. (4.15). 
9 R. G. Newton, Scal/ering Theory of Waves and Particles 

(McGraw-Hill, New York, 1966), Eq. (2. 17). 
10 R. G. Newton, Ref. 4, end of Sec. 5 
11 The notation f.(k) refers to Jost solution corresponding to 

the potential V.' The fn (k) are to be distinguished from the 
quan.tities ~m(k) which are the coefficients of the expansion 
ing of f(k). 

JOURNAL OF MATHEMATICAL PHYSICS 

12 W.M. Frank,J . Math. Phys. 8, 466 (1967);9,1890 (1968). The 
results in this reference were based on a representation of 
lV(r) 11/2 as a Laplace-Stieltjes transform. The representa­
tion of IV(r)1/2 as a Laplace-Stieltjes transform is not a 
real limitation Since the space of L-S transforms is every­
where dense over the space of functions with finite first 
moment. I am indebted to Dr. H. Furstenberg for his observa­
tion. The constant 2/.fi in the expression for t following Eq. 
(15) in the last reference can be dispensed with. I am grate­
ful to Dr.D.J.Land for this result. 

13 See R. G.Newton,Ref.4,Eq. (4. 15). 
14 E. C. Titchmarsh, The Theory of Functions (Oxford U. P., 

London, 1939), 2nd ed,S. 21. 
15 R. G.Newton, Ref. 9, Chap. 12, pp. 337-38. 
16 R.G.Newton,Ref.9,p.346 
17 R.G.Newton,Ref. 4,Sec.8. 
IS This expression for the scattering length can be obtained 

from the power series expansion for the Jost function f (k) 
and the relation A = - liW[t( - k) - f(k)]!2ikf(k). The expres­
sion for the Jost functi~ IS given in Eq. (10). 

IS. F. Calogero, Phys. Rev. 139, B602 (1965); E. M. Ferreia and 
F. F. Teixeira,J.Math. Phys. 7,1207 (1966). 

19 The Holder inequality which appears in any book on func­
tional analysis has the form for discrete sums (l/p + l/q = 
1) 

lL:a jb j 1< [L: (aj)p]l/P[L: (bj)q Plq . 

19. D. Masson,J . Math. Phys. 8, 2308 (1967); F. Calogero, Com­
mun. Math. Phys.1, 80 (1965). 

20 Kolmogorov and Fomin, Functional Analysis (Graylock Press, 
Rochester, N.Y., 1957), Translation of 1954 Russian Edition 
by L. F. Boron, Vol. I, Chap. II, Theorem 2, p. 40. 

21 E. C. Titchmarsh, Eigenfunction Expansions, Part I (Clarendon 
Oxford, 1962), 2nd ed.,p.1l5, Lemma 5.6. 

22 F. Calogero, Variable Phase Approach to Potential Scattering 
(Academic ,New York, 1967),Chap.6,Eqs.1-10. 
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Let VxCt) be a one-parameter operator family of positive type in a Hilbert space Je and Vet) its minimal 
unitary dilation with infinitesimal generator H. If Vx(t) is a contractive semigroup, then H is not posi­
tive. If in addition Ux(t) --> 0 for t --> 00, then there exists a state <p E Je on which H is not defined. We 
interpret these and other results in the context of the quantum -mechanical theory of unstable particles 
and the scattering theory of Lax and Phillips. 

1. INTRODUCTION 

We assume within the framework of quantum 
mechanics that unstable particles are represented 
by a definite subspace X of a Hilbert space X and 
that their time evolution UJe(t) is therefore the con­
tractionl of the unitary evolution U(t) = e- iHt to the 
subspace X. The inverse decay problem then con­
sists in reconstructing a pair {X, U(t)} provided 
U x(t) is given. 

Such an embedding of an evolution Ux(t) into an 
extended space X is possible if and only if Ux(t) is 
an operator family of positive type which is con­
tractive, i.e., for which Ux(O) = Ix and Ux(- t) = 
Ux 1(t). Furthermore the reconstruction is unique 
if X is supposed to generate X under U(t), i.e., if 

U U(t)X = X. 
t~O 

Since we are interested mainly in the phenomenon 

of decay, we assume that Ux(t) is strongly contrac­
tive: 

(1) S - lim Ux(t) = O. 
t ... oo 

Together \Q.th (1) we also consider the impact of 
the following conditions which mayor may not hold 
in decay: 

(2a) U x<t) is a semigroup. 

(2b) X is finite-dimensional. 

(2c) the states in X have finite total energy. 

(2d) H is defined everywhere in X. 

The reconstruction of {X, U(t)} from {X, Ux(t)} is 
based on the well-known and highly developed 
theory of extension of Hilbert spaces1 ; but it is 
remarkable that under Assumptions (1) and (or) 
(2) many striking results of physical interest can 
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tive. If in addition Ux(t) --> 0 for t --> 00, then there exists a state <p E Je on which H is not defined. We 
interpret these and other results in the context of the quantum -mechanical theory of unstable particles 
and the scattering theory of Lax and Phillips. 

1. INTRODUCTION 

We assume within the framework of quantum 
mechanics that unstable particles are represented 
by a definite subspace X of a Hilbert space X and 
that their time evolution UJe(t) is therefore the con­
tractionl of the unitary evolution U(t) = e- iHt to the 
subspace X. The inverse decay problem then con­
sists in reconstructing a pair {X, U(t)} provided 
U x(t) is given. 

Such an embedding of an evolution Ux(t) into an 
extended space X is possible if and only if Ux(t) is 
an operator family of positive type which is con­
tractive, i.e., for which Ux(O) = Ix and Ux(- t) = 
Ux 1(t). Furthermore the reconstruction is unique 
if X is supposed to generate X under U(t), i.e., if 

U U(t)X = X. 
t~O 

Since we are interested mainly in the phenomenon 

of decay, we assume that Ux(t) is strongly contrac­
tive: 

(1) S - lim Ux(t) = O. 
t ... oo 

Together \Q.th (1) we also consider the impact of 
the following conditions which mayor may not hold 
in decay: 

(2a) U x<t) is a semigroup. 

(2b) X is finite-dimensional. 

(2c) the states in X have finite total energy. 

(2d) H is defined everywhere in X. 

The reconstruction of {X, U(t)} from {X, Ux(t)} is 
based on the well-known and highly developed 
theory of extension of Hilbert spaces1 ; but it is 
remarkable that under Assumptions (1) and (or) 
(2) many striking results of physical interest can 
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be derived by a rather unsophisticated application 
of this theory. 

The mathematical results are derived in Sec. 3. In 
Sec. 4 we give their phy:;;ical interpretation. With 
respect to quantum mechanics the main points are 
as follows: 

(1) If Ux(t) has the semigroup property, then 
the total energy is not positive. 

(2) If X is finite dimensional and Ux(t) is a 
semigroup which decays to zero, then X 
contains states with infinite energy. 

(3) In a decay-scattering system2 the states 
in X have finite energy and the evolution 
Ux(t) decays to zero but does not have 
the semi group property. 

With respect to the theory of acoustical scattering, 
the same mathematical results lead to a some­
what different physical interpretation, since the 
generator H of U(t) represents the square root of 
the energy rather than the energy itself. 

2. BASIC MATHEMATICAL TOOLS 

Let X be a separable Hilbert space-and U(t) = 
e- iHt a strongly continuou.s unitary representation 
of the additive real line R, H its self-adjoint gener­
ator. We call U(t) a motion. Let P be a nontrivial 
projection in X with n-dimensional range X = 
PX. The contracted motion Ux(t) is the restric­
tion of P U(t) P to X. X is generating under U(t) 
if the closed linear space spanned by the vectors 
U(t)cP for all cP E X and t E R is X. 

The contracted motion Ux(t) is a strongly con­
tinuous operator family in X of positive type, i.e., 

E (cppUX<t" - ti)CPkh? 0 
i.k 

for all finite sequences CPi E X, ti E R. Further­
more it satisfies 

Ux(O) = I(-t) = U x1(t) 

and its operator norm is bounded by 1. 

Conversely the following holds: 

Theorem 11: If Ux(t) is a continuous operator 
family of positive type in a Hilbert space X, then 
there exists a triplet {X, U(t), p}, where U(t) is a 
motion in X and P a projector, such that 

X = PX , U x(t) = PU(t)p Ix. 
If X is required to be generating under U(I), then 
the dilation l {X, U(t)} of {X, Ux(t)} is minimal and 
essentially unique. 

Next we review the concepts we shall need from 
the theory of semigroups. An operator family Z(t) 
in X is a semigrvup, if Z(t l + t 2) = Z(t l )Z(t2 ) for 
all t}l t2 ? O. A semigroup Z(t) is c.(mtractive if 
Z(O)=land the operator norm ofZ(t) is bounded by 

1; a contractive semigroup Z(t) is strungly cuntrac­
tive if s-lim t .-. oo Z(t) = 0 and strictly contractive 
if the operator norm is strictly less than 1 for 
some t > O. If X is finite dimensional, the con­
cepts of strong and strict contractiveness coin­
cide. But in infinite spaces this is not true; in 
fact, let CPi be an orthonormal basis in X, then the 
semigroup 

is strongly, but not strictly contractive. 

If the semigroup Z(t) = Ux(t) is the contraction of a 
motion, then it is automatically strongly continuous 
and contractive, and it can be defined for t < 0 by 
z(- t) = PU(- OP = PUi(t)p = (PU(t)p)i = Zi(t). 

Finally, we remark that a contractive semi group 
is of positive type and admits therefore a unitary 
dilation. 

Example 1: Exponential decay: The exponen-
tial Z(t) = e-a.t, t? 0, a > 0, is a strictly contrac­
tive semigroup of operators in a one-dimensional 
space X. Extending its definition to the negative 
axis, we obtain the following continuous function of 
positive type: 

Z(t) = . - = 100 
e-iH a 1T dA. f

e-at t > O} / 
eat t < 0 -00 A2 + a 2 

In reconstructing the unitary dilation U(t) of Z(t), 
we compare this expression with the contracted 
motion 

PU(t)P = Pe-iHtp = Je-iHd(PE(A)P), 

where E(A) is the spectral family of H and P the 
one-dimensional projector PX = X. From this 
comparison we see that PE(A)P admits the Radon­
Nikodym derivative (a/1T)/(A2 + ( 2), whose sup­
port is the entire line R. Hence the spectrum 
a(ll) of H is R and absolutely continuous (and, of 
course, simple) (cf.proof of Theorem 2, Sec. 3) in 
the minimal extension, in which PE(t:.)P ;" 0 for 
all Borel subsets t:. of R. The dilation {X, U(t)} is 
therefore realized in the space L2(R) of Lebesgue 
square integrable functions by 

and the subspace X = PX is spanned by any nor: 
malized square-integrable functions cp(A) satisfying 
(almost everywhere) 

since 

z(t) = (cp, U(t)cP) 

= J e-o.. t \ cp(A) \2 dA = J e- iAt a/1T dA. 
A2 + a 2 

We finally remark that H is not defined on ¢ and 
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therefore on J<:, since (Jeep) (A) = A ep(A) is not 
square integrable. 

Example 2: Periodic motion: Let Z(t) = cost. 
This is again a continuous function of positive 
type, satisfying Z(O) = 1 and Z(- t) = zt(t) (not a 
semigroup). From 

Z(t) = ~ (e it + e- it) . 

= ~ I e- iAt [6(A + 1) + 6(A - l)]dA 

= I e-itd(PE(A)P), 

it follows that a(H) consists of two discrete, simple 
eigenvalues ±1 in the minimal dilation of Z(t). The 
triplet {Je, U(t), p} is then represented by 

Je = R2, U(t) = (cost - sint), P = (01 00\ 
sint cost ! 

3. UNITARY DILATION OF SEMIGROUPS 

We establish relations between contracted motions 
Ux(t) and the spectrum of their minimal unitary 
dilations U(t) or, respectively, the infinitesimal 
generators H of U(t). Since we shall be mainly 
concerned with decay, we impose on Ux(t) to be 
strongly contractive semigroups. 

Assumption 1: Let U(t) = e- iHt be a motion in 
a Hilbert space Je, J<: = PJe a proper, finite-dimen­
sional subspace of Je which is generating under 
U(t), and the contracted motion Ux(t) a strongly 
contractive semigroup. 

Note that in this case U:x!.t) is automatically con­
tinuous, contractive, and satisfies Ux(- t) = Uxt(t) 
and Ux(O) = Ix; U(t) is isomorphic to the minimal 
dilation of Ux(t). If B is the generator of Ux(t), 
EX(A), and Rx.{A) being the contractions of the spec­
fral family E(A) of H and the resolvent R(z) = 
(z - H)-I, then we have 

jeBt t ~ O} 
Ux(t) = 'I t = J )e-o...tdEx(A) 

{e-Bt t<O o(H 

= ~ "'e- izt R (z)dz 2m 'j/ x ' (3.1) 

where the integration path 0 encloses the spec­
trum a(H). 

In Theorem 2 we collect results which can be 
simply derived from the Assumptions 1. Although 
one· or two of them are found in different contexts 
elsewhere, for instance part (1) in Ref. 3, we feel 
it useful to restate all proofs under our unified 
assumptions. 

Theorem 2: Under the Assumption 1, 

(1) a(H) = R (entire real line). 

(2) Rea(B) < O. 

(3) a(H) absolutely continuous. 

(4) H not defined on all J<:. 

(5) H defined on ep E J<: if and only if 
Re(ep,Bep) = 0, Im(ep,B2ep) = O. 

(6) The expectation value (H) '/J == 
I Ad(ep, E(A)ep) of H in the state ep exists 
if and only if Re(ep,B ep) = O. 

Parts (1) and (4) do not require the assumption 
that J<: is finite dimensional. 

Proof: Part (1): Rx(z) is regular analytic for 
z Ef a(H) and can be expressed in terms of B and 
Bt as follows: 

f(z - iB)-I, Imz > 0, 
Rx(z) = ) 

~(z+iBt)-I, Imz<O. 

In fact, for Imz > 0, 

Rx(z) =-iJ
oo 

Pei(z-H)tPdt 
o 

= - i 1000 
ei(z-iB')tdt = (z - iB)-1 

and, for Imz < 0, 

o . 
Rx(z) = i J Pe,(z-H)tPdt 

-00 

o = i J ei(z+iBt)tdt;::::: (z + iBt)-I. 
-00 

(3.2) 

Suppose now a(H) '" R. Then R - a(H) is an open 
subset of R and RX<z) can be analytically continued 
from one half-plane to the other. We obtain there­
fore (z - iB)-1 = (z + iBt)-1 for all z and this im­
plies Bt = - B. According to (3.1) we have then 
Ux(t) = e Et for all t E R with B anti-Hermitian. 
Hence Ux(t) would be a unitary group with mini­
mal dilation U(t) = Ux(t) and 3<: = Je not a proper 
subspace of Je. This proves (1). 

Part (2): B is an operator in the finite-dimen­
sional space 3<:; a(B) is therefore discrete. Sup­
pose z E a(B) with Rez ~ O. Then for a vector ep in 
the corresponding eigenspace, 

IIUx(t)epI12 = IleBtepl1 = e(2Rez)tllepll; 

hence Ux(t) is not strongly contractive. 

Part (3): According to (3.1) and (3.2), for any 
E > 0, 

Ux(t) = 21. Joo e-iAt[Rx(A - iE) - RX(A + iE)]dA m -00 

(3.3) 

Since Rea(B) < 0, Rea(B!) < 0, the real axis R be­
longs to the regularity domain of both (z + iBt)-1 
and (z - iB)-I. Hence the limit E -) 0 exists and 
can be carried out in the integrand. We then ob­
tain 

Ux{t) = 1. e-iAtdEx(A) 
o(H) 

= ~ foo e-o,·t[(A + iBt)-1 - (A - iB)-I]dA 
2m -00 ' 
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from which we conclude that EX(A) has the Radon­
Nikodym derivative (almost everywhere) 

d~ EX(A) :::: 2!i [(A + iB t )-1 - (A - iB)-1]. (3.4) 

Hence EX(A) is absolutely continuous. Suppose now, 
E(A) were not absolutely continuous; then P would 
have to project away the nonabsolutely continuous 
part of JC with respect to H. [The projection of the 
nonabsolutely continuous part of E(A) cannot be 
absolutely continuous unless it is zero.] But this is 
impossible, since PJC is generating. In fact, if PJC 
is generating, then E(t:..)P "" 0 for all Borel sets 
t:.. cR. Let t:..o be the support of the non-absolutely 
continuous part of a(H). E(t:..o) "" 0 then implies 
PE(t:..o) :::: (E(t:..o)P)t "" 0 and it follows that Ex(t:..o) :::: 
(PE(t:..o»(PE(t:..o»t is nonzero. Therefore, E(A) and 
the spectrum a(H) are absolutely continuous. 

Part (4): If H is defined on all Je, then it is defined 
on an orbit Ux(t)cp, for all t ?: O. But then it follows 
from the semigroup property that PHe- iHt P :::: 
PHPe-iHtp, and hence 

!! Ilux(t)cp \12 :::: ~ \lPe-iHtcp \12 
dt dt 

= 2Re[- i(Pe-,Htcp,HPe-iHtcp)]:::: 0 

identically for all t ?: 0; Ux(t) would therefore not 
be strongly contractive. 

Part (5): Since the spectrum a(H) is the entire real 
line R and absolutely continuous, there exists a 
spectral representation IJC~dA with respect to H 
by square integrable vector functions. Let {CP(A)1 
with CP(A) E X).. be the spectral representation of 
cp E X. Then, using (3.4) and the relation 

(cp, U(t)cp) :::: J e-i~t \I CP(A) \I~ dA :::: J e-i~t d(cp, E(A)CP), 

we find 

\lCP(A)\I~:::: d~ (CP,EX(A)CP) 

:::: ~ (cp [(A + iB t)-1 - (A - iB)-1 ]CP) 
21Tt ' 

:::: - 2~ (cp, (A + iB)-1 (B + Bt) (A - iB)-1 cp) 

= -! Re(cp, (A + iB t )-1 (A - iB)-1 Bcp). 
1T 

Now, asymptotically for I A I -> <Xl, 

(A + iB t)-1 (A - iB)-l 

= A-2 (1 + iB t /A)-1 (1 - iB/A)-1 

= A-2[1- iBt/A + 0(A-2)] 

X [1 + iB/A + 0(A-2)] 

:::: A-2 + iA-3 (B -Bt) + 0(X-4) 

and, therefore, 

\lCP(X)\I~ ~ - .\-2 rr-1 Re(cp,Bcp) 

- .\-31T-1 Re[i(cp, (B - Bt)Bcp)] + 0(.\-4) 

or since Re[i(cp,BtBcp)]:::: 0, 

\lCP(A)\I~ 
~ - .\-2 1T-1 Re(cp,Bcp) + .\-3 rr-l Im(cp,B2cp) 

+ 0(.\-4). (3.5) 

Since H is defined on cp if and only if 

IIHcpIl2:::: 1-: .\2\1CP(A)\I~d.\<<Xl, 

(3.5) implies as a necessary and sufficient condi­
tion 

Re(cp,Bcp):::: 0, Im(cp,B2cp):::: O. 

Remark 1: Necessity could have been derived 
in a much simpler way: if H is defined on cp E X, 
then the equation (cp, e- iHt cp) :::: (cp, eBtcp) has first­
and second-order derivatives at t = 0, i.e., 

(cp,BCP) = - i(cp,HCP) purely imaginary, 

(cp,B2cp):::: - (cp,H2cp) == - IIHcpll2 real. 

Part (6): the expectation value (n>", of H in rp is de­
fined if and only if C:) .\ II cp(.\) II ~ d.\ <<Xl, or, accord­
ing to (3.5) if and only if Re(cp,Bcp):::: O. 

• 
We now construct an example of a strongly con­
tractive semigroup which admits a state on which 
H is defined. The existence of such an example 
proves that Part (4) of Theorem 3 cannot be 
strengthened to the statement that the domain of 
H and Je are disj01nt, and Parts (5) and (6) are 
therefore not empty. 

Example 3: Let X be a two-dimensional Hil­
bert space with orthonormal basis CPu CP2. Let 
B ::::(-~ 2:1f). Then 

~
' e-t(1 2v'2(1 - e-

t») t ?: 0 
o e- t ' 

Ux(t) :::: 

e
t 

(2v'2(1 ~ e-t) e~)' t < 0 

is a contractive semigroup satisfying 

Ux(O) = I, Ux(- t) :::: U xt (t), s-lim Ux(t) = O. 
t->co 

Ux(t) is therefore a strongly (and strictly) con­
tractive semi group. Let U(t) :::: e- iHt be its mini­
mal unitary dilation, and Ex(t) the contracted spec­
tral family of H. Then we have, by Fourier trans­
form, 

-$/[(.\ + i) (X + 2i)]~ 
dX 2/(X2 + 4) , 

(3.6) 
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and we conclude that EX(A) admits a Radon-Niko­
dym derivative with support R and that therefore 
the spectrum a(H) is the entire line, absolutely 
continuous and of uniform multiplicity 2. 

Let CPi (A) be the spectral representation with 
respect to H of the basis vectors CPi E ~. Then, 
comparing 

to (3.6), we obtain the normalized functions 

1 1 .A 1 CPl(A) = '- -,-., CP2(A) = z -, + 2· 
i'/1r Il - t 1r Il Z 

in L2(R). This achieves the reconstruction of the 
minimal dilation, since we know how H and 
e- iHt = U(t) act in this representation and since we 
have identified the two-dimensional subspace Je 
spanned by CPl (A) and CP2(A). 

The particular feature of this example is the fact 
that although H is not defined on the basis CPi' 
since ACPi(A) Ef L2(R), there exists a unique linear 
combination (up to a scalar multiple) 

or, in spe~tral representation, 

cp(A) = $CPl (A) + CP2(A) = 3~) 

x (A _ nA + 2i) ~ O(A-2
) 

on which H and (II)", are defined (I\Hcpl\2 = 6, 
(H)", = 0). This implies, in particular, that 

d~ IIUx (t)cpI\2It=o = 2 Re(cp,Bcp) = 0 (3.7) 

for this special vector cP, while for all other vec­
tors in Je this derivative is negative, consistent 
with contractiveness, as can easily be checked in 
this concrete example. 

Relation (3. 7) is interesting, because it means 
that in a semi group with III U x(t) III s 1 a vector cP 
may exist whose norm has initial decay rate 0·, 
although Ux(t)cP -) 0 as t -) 00. This is clearly due 
to the nonnormallty of B which makes it possible 
that the numerical range of B exceeds the spec­
trum a(B). [In our example, although a(B) = 
{- 1,- 2}, (cp,Bcp) = 0]. If B is normal the most 
general two-dimensional strongly contractive real 
semigroup is r logarithmic spiral and 
(d/dt)lle BtcpIi 2 /1=0 < 0 for all cP E Je. 

Remark 2: Theorem 2 has been formulated un­
der the global assumption 1 for the sake of simpli­
city. It should, however, be noted that the full 
strength of these assumptions is not necessary for 
all of the assertions made. In particular, (1) and 
(4) do not require that the subspace Je be genera­
ting or finite-dimensional. Furthermore, the 
necessity of (5) has been proved without using 
strong contractiveness of U (t). 

The sufficiency of the conditions in Parts (5) and 
(6) depend on Part (2) which in turn makes essen­
tial use of the finiteness of Je, since in infinite­
dimensional subspaces the spectrum a(B) can be 
continuous and may extend to Rea(B) = O. In that 
case, the limit E -) 0 in the integrand of (3.3) may 
not lead to an integrable function and absolute 
continuity of a(H) as expressed in (3.4) may fail 
(see Ref. 3). . 

If we content ourselves with ordinary continuity of 
a(H), the following modification of Part (3) can be 
proved without assuming the semigroup property: 

Theorem 3: If Ux(t) is a contracted motion 
which is strongly contractive (indeed even weakly) 
(not necessarily a semigroup), then a(H) is con­
tinuous. 

Proof: Let Ec(A) be the spectral family of the 
continuous part He of H and ~ the projections on 
the discrete eigenspaces with eigenvalues ~. For 
an arbitrary cP E X we then have, for t -) 00, 

(cp,PU(t)Pcp) 

= E j e- iA/ IIEjPcp 1\2 + J a (i/)e-iAtd(cp,PEe(A)Pcp) 

-) O. 

We must show that Ej Pcp = 0 for all cp E X, since 
then PX is not generating under U(t) unless Ej = 
O. [Note that if Ee(A) were absolutely continuous, 
this would be an immediate consequence of the 
Riemann-Lebesgue lemma.] 

Let 

k(t) = l]je- t>../ II~pcp1\2 

= (cp, PU(t)Pcp) - 10(H) e-i>..tdm(>..), 

where dm(>..) = d(cp, PEe(A)Pcp) is of finite varia­
tion and has no point measure. According to 
Wiener's theorem (cf., for example, Ref. 3, p. 145), 

nl(t) = J e-iHdm(A) 

has the property that 

lim 1. 1 T Im(t)1 2 dt = o. 
t .... oo T -T 

It is a corollary to this theorem that, given any 
E,6> 0 and T sufficiently large,the Lebesgue 
measure of the set of t in (- T, T) for which 
I rn(t) I 2:: E is less than To. There is, furthermore, 
by the contractive property, a To such that 
l{cp,pu(t)pcp)1 < E for t 2:: To. Since 

Ik(t)I:5I(cp)~U(t)pcp)1 +lm(t)l, 

it follows that I k(t) I < 2E on a set of measure 
greater than 2T - T 6 - 2T 0 in (- T, T) (for T suf­
ficiently large). k(t) is, however, an almost perio­
dic function, since the Aj are denumerable and the 
series is absolutely convergent (~j IIEjPcp 112 :5 

IiPcp 11 2 ). 
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Hence the coefficients are given by 

1 1- T IIE.p¢112 = lim 2T -T e iA/ k(t)dt 
J T-oo 

< lim 2~ [4ET + (To + 2To)llp <p 112] 
T-OO 

< 2E + oll<p112, 

i.e., they vanish, as was to be proven. 

4. PHYSICAL INTERPRETATION 

• 
We introduce the following language suitable for a 
quantum-mechanical interpretation. X is the 
space of physical states, U(t) their time evolution, 
and X a subsystem of X with time evolution U:J.t). 
If Ux(t) is strongly contractive, X is a subspace of 
decaying states and Ux(t) describes their decay. 
The decay law of a state <p E: X is defined as 

Pcp(t) = IIUx(t)<p112 = TrPUi(t)PcpU(t)P, 

where Pcp is the projection on the one-dimensional 
subspace spanned by <p,and (d/dt)Pcp(t) is the de­
cay rate of <p. Pcp (t) is interpreted physically as 
the probability that a state <p created at time t = 0 
is still in the subspace X at time t. 

The infinitesimal generator H of U(t) is called the 
Hamiltonian and its physical significance is that 
of the total energy of the system. The expectation 
value of the energy in the state <p is defined by 

If H is defined on <p this equals simply (<P,H<p). A 
state <p for which (H)cp is finite is called a finite 
energy state; otherwise it is called an infinite 
energy state. 

Suppose now that the evolution Ux(t) of a subsys­
tem X is given, then the minimal unitary dilation 
{X, U(t)} of {X, Ux(l)} can be interpreted as the 
minimal quantum-mechanical phenomenology com­
patible with Ux(t). 

With this terminology the results of Sec. 3 can be 
interpreted as follows: 

Theorem 4; Let U x(t) be the time evolution of 
a finite-dimensional subspace X, {:re, U(t)} the 
corresponding minimal quantum-mechanical 
phenomenology, and H the total energy. 

(1) If U x(t) is a semigroup, then the total 
energy is not positive. 

(2) If U x (t) is a semigroup which decays, 
then there exist infinite energy states in 
X. 

(3) If U X<t) is a semigroup, finite energy 
states have initial decay rate zero. 

(4) If all states in X have finite energy, then 
Ux(t) is not a semigroup. 

Proof; Part (1) is an immediate consequence of 
Theorem 2, Part (1). Part (2): If all <p E: X had 
finite energy, then, according to 2 (6), Re(<p, B<p) = 
o for all <p E: X, and hence, in particular, Re(Ux(t)<p, 
BUx(t)<p) = 0 for all t 2:: O. But then 

%t II Ux(t)<p112 = 2 Re(Ux(t)<p,BUx(t)<p) == 0 

and Ux(t) would not be strongly contractive. 

Part (3): If <p E: X had finite energy, then again, 
according to 2 (6),Re(<p,B<p) = 0 and hence 

%t Pcp(t) 1 t~O = :t IIUx (t)<p 112 It=0 = 2 Re(<p,B<p) = O. 

Part (4) is an immediate reformulation of 4 (2). 
We remark that an evolution which decays no­
where in X is unitary in X and is isomorphic to 
its minimal dilation. 

• Next we abandon the semigroup property for 
Ux(t) and assume instead that the finite-dimen­
sional subspace X has finite energy. We then de­
compose H as follows: 

H = Ho + V, Ho = PHP + PHi>, 

V = PHP + PHP, (4.1) 

where P = I - P. This decomposition has the 
following properties 

(1) Ho and H are self-adjoint. 

(2) The eigenstates <Pi of PHP have eigen­
values m i = (H)cp .• , 

(3) V has finite rank 2n, where n is the 
dimension of X. 

The decomposition (4.1) is canonical in the sense 
that the subspace X is invariant under Ho while 
V contains only the part of H under which X de­
cays (no self-interaction of PX = X and PX = 
X8X). With these conventions we have 

Theorem 5: If Je has finite energy [the decom­
position (4.1) being therefore well defined], then 
U x(t) has the form 

Ux(t) = 2!i ¢-e-iztRx(z)dz, 
(4.2) 

RxCz) = (4)(z -mi)Pi-PVPRo(Z)PVp)-l, 
• 

where Pi are the projections on the eigenstates c{>i 
of PHP with eigenvalues m i and po(z) = (z - HO)-l 
is the resolvent of Ho. Furthermore, Ux(t) satis­
fies the integro-differential equation 

i it Ux(t) t _ __ 

= PHUx(t) - i J dTPHPe-iPHPT PHUx(t - T). 
o (4.3) 

Proof; (4.2) follows from the second resolvent 
formula R(z) = Ro(z) + Ro(~VR(z) by projecting _ 
into the subspaces PX !Uld PJC and noting that P, P 
reduce Ro(z). Similarly (4.3) is obtained from the 
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identity zR(z) - 1 ~= HR(z) by projection with P, P 
and by making the inverse Laplace transform in 
which products become convolutions. (For de­
tails see Ref. 2.) • 

In the particular case where a(H) is assumed to be 
absolutely continuous, the decomposition (4.1) 
leads to the so-called decay scattering systems 
{Ho, H}. Such systems, with physical applications, 
for example, to K-meson decay, have been treated 
in detail elsewhere. (See Ref. 2 and 5.) Due to the 
finite rank of the "potential" V, the spectrum of 
PHeJi is absolutely continuous and coincides with 
a(9); a scattering theory with a unitary scattering 
matrix on PX then becomes possible. It can be 
shown that if V is sufficiently small, the discrete 
eigenvalues mj of Ho are embedded in a(PHJS}. 
The corresponding eigenvectors ¢i are then inter­
preted as unstable particles which decay into the 
continuum PX through the potential V. The pre­
sent analysis shows that these decays cannot be 
exponential; more generally: the decay of the sub­
space JC = PX of unstable particles is not a semi­
group. 

We also consider briefly the classical scattering 
theury of Lax and Phillips.3 In this theory the 
total time evolution is again given by a unitary 
motion U(t) in a Hilbert space X. There exists 
furthermore a subspace JC of X for which the con­
tracted motion Ux(t) is a strongly contractive 
semigroup. The subspace JC is, however, infinite 
dimensional in most practical cases. If we as-. 
sume that JC is generating under U(t}, then Theo­
rem 2 immediately implies that in the Lax­
Phillips system the generator H of U(t) 

(1) is not positive 

(2) is not defined on the entire space JC. 

Note however, that in this theory the generator H 
is nut interpreted as the energy. The latter corre­
sponds rather to H2. The physical Significance of 
(1) and (2) (stated above) is, therefore, less strik­
ing in the classical context. 

In the following paragraphs, we review the parts 
of the theory which are essential for our remarks, 
and show in what sense the subspace JC can be 
considered as generating. 

The theory of Lax and Phillips is characterized 
by the existence of orthogonal subspaces D + and 
D_ of X, called outgoing and ingoing, and a uni­
tary group U(t), with the properties 

(i) U(t)D+ C D+ and U(- t)D_ C D_. t > 0, 

(ii) (1 U(t)D+ = {a}, 
(iii) U U(t)D+ = X, "It. 

.. This work was supported in part by National Science Founda­
tion grant No. GP-23304. 
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operateurs de l'espace de Hilbert (Masson, PariS, 1967). 
F. Riesz and B. Sz.-Nagy, Functional Analysis (appendix). 

2 L. P. Horwitz and J. - P. Marchand, Rocky Mountain J. Math. 1, 

The statements (ii) and (iii) are valid for D_ as 
well. Let P+ and P_ be the orthogonal projections 
with null spaces D+ and D_. Then, the one-para­
meter family of operators Z(t) = P+U(t)P_ is a 
semi group on the subspace JC = (D + EB D_),I-. To 
verify this assertion, we note that 

Z(t + s) - Z(t)Z(s) = P+U(t) [I - P_P+ ]U(s)P_ 
vanishes on JC. If x E JC, then P_ x E D= ; since 
U(- t)D- C R, U(t)D! C D~ ,and y = (I - P_P+) 
U(s)p_x therefore belongs to D+. It then follows 
from property (i) that p+ U(t)y = O. 

We now show that Z(t) may be equivalently defined 
as 

Z(t) = PxU(t)Px , 

i.e., as a contracted motion. To see this, we write 
x = XD+ + XD_ +:lx ; then 

(P+U(t)p_) x = P+U(t)(xD+ + xx), 

= P+U(t}Pxx 

= Px U(t)pxx, 

where the last equality follows from the fact that 
Pxx E D~; U(t} maps D~ into itself, and on this 
subspace, P+ is equal to Px. 

The subspace JC can be considered as generating 
in the sense of the following theorem: 

Theorem 6: Let X' be the subspace of X gener­
ated by JC under U(t), Then the scattering opera­
tor S is reduced by the decomposition X = X' EB 
(Xe X') and its part in (X8 X') is trivial. 

Proof: Let D± = D±8 (D± (1 X'), Since U(t) is 
unitary and invariant on X', it is invariant on 
D + EB Ii, and the scattering problem can there!gre 
be considered on each part separately, Since D+ , 
fL, U(t) forms a scattering system in ~hic~ D+ [Q-] 
is outgoing [incoming] and Xe X' = X = D+ EB D_, 
we know that in this part the scattering matrix is 
equivalent to I. The study of scattering systems 
can therefore be restricted to situations in which 
JC is generating. 

• 
Note added in proof: Meanwhile David Williams 

published an article in Commun. Math. Phys. 21, 314 
(1971), whose results (not methods) partly overlap 
with ours. 
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